A139701 Binomial transform of [1, 100, 100, 100, ...].
1, 101, 301, 701, 1501, 3101, 6301, 12701, 25501, 51101, 102301, 204701, 409501, 819101, 1638301, 3276701, 6553501, 13107101, 26214301, 52428701, 104857501, 209715101, 419430301, 838860701, 1677721501, 3355443101, 6710886301, 13421772701, 26843545501
Offset: 1
Examples
a(3) = 301 = (1, 2, 1) dot (1, 100, 100) = (1 + 200 + 100).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Programs
-
Magma
[100*2^(n-1)-99 : n in [1..30]]; // Wesley Ivan Hurt, Aug 16 2016
-
Maple
a:=proc(n) options operator, arrow: 100*2^(n-1)-99 end proc: seq(a(n), n=1.. 30); # Emeric Deutsch, May 03 2008
-
Mathematica
100*2^(Range[30] - 1) - 99 (* Wesley Ivan Hurt, Aug 16 2016 *) LinearRecurrence[{3, -2}, {1, 101}, 40] (* Vincenzo Librandi, Aug 17 2016 *)
-
PARI
Vec(x*(98*x+1)/((x-1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Mar 11 2014
Formula
A007318 * [1, 100, 100, 100, ...].
a(n) = 100*2^(n-1)-99. - Emeric Deutsch, May 03 2008
a(n) = 2*a(n-1)+99 for n > 1. [Vincenzo Librandi, Nov 24 2010]
a(n) = 3*a(n-1) - 2*a(n-2) for n > 2. G.f.: x*(98*x+1) / ((x-1)*(2*x-1)). - Colin Barker, Mar 11 2014
Extensions
More terms from Emeric Deutsch, May 03 2008
More terms from Colin Barker, Mar 11 2014
Comments