A139634
a(n) = 10*2^(n-1) - 9.
Original entry on oeis.org
1, 11, 31, 71, 151, 311, 631, 1271, 2551, 5111, 10231, 20471, 40951, 81911, 163831, 327671, 655351, 1310711, 2621431, 5242871, 10485751, 20971511, 41943031, 83886071, 167772151, 335544311, 671088631, 1342177271, 2684354551
Offset: 1
a(4) = 71 = (1, 3, 3, 1) dot (1, 10, 10, 10) = (1 + 30 + 30 + 10).
-
[10*2^(n-1)-9: n in [1..50]]; // Vincenzo Librandi, Mar 30 2014
-
A139634:=n->10*2^(n-1)-9; seq(A139634(n), n=1..30); # Wesley Ivan Hurt, Mar 26 2014
-
a=1; lst={a}; k=10; Do[a+=k; AppendTo[lst, a]; k+=k, {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 17 2008 *)
CoefficientList[Series[(8 x + 1)/((x - 1) (2 x - 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 30 2014 *)
LinearRecurrence[{3,-2},{1,11},30] (* Harvey P. Dale, Feb 19 2023 *)
-
a(n)=10*2^(n-1)-9 \\ Charles R Greathouse IV, Oct 07 2015
A139697
Binomial transform of [1, 12, 12, 12, ...].
Original entry on oeis.org
1, 13, 37, 85, 181, 373, 757, 1525, 3061, 6133, 12277, 24565, 49141, 98293, 196597, 393205, 786421, 1572853, 3145717, 6291445, 12582901, 25165813, 50331637, 100663285, 201326581, 402653173, 805306357, 1610612725, 3221225461, 6442450933, 12884901877
Offset: 1
a(4) = 85 = (1, 3, 3, 1) dot (1, 12, 12, 12) = (1 + 36 + 36 + 12).
A099003
Number of 4 X n 0-1 matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (10;0) and (11;0).
Original entry on oeis.org
1, 16, 46, 106, 226, 466, 946, 1906, 3826, 7666, 15346, 30706, 61426, 122866, 245746, 491506, 983026, 1966066, 3932146, 7864306, 15728626, 31457266, 62914546, 125829106, 251658226, 503316466, 1006632946, 2013265906, 4026531826
Offset: 0
A139635
Binomial transform of [1, 11, 11, 11, ...].
Original entry on oeis.org
1, 12, 34, 78, 166, 342, 694, 1398, 2806, 5622, 11254, 22518, 45046, 90102, 180214, 360438, 720886, 1441782, 2883574, 5767158, 11534326, 23068662, 46137334, 92274678, 184549366, 369098742, 738197494, 1476394998, 2952790006, 5905580022, 11811160054
Offset: 1
a(4) = 78 = (1, 3, 3, 1) dot (1, 11, 11, 11) = (1 + 33 + 33 + 11).
-
seq(11*2^(n-1)-10,n=1.. 25); # Emeric Deutsch, May 03 2008
-
a=1; lst={a}; k=11; Do[a+=k; AppendTo[lst, a]; k+=k, {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 17 2008 *)
CoefficientList[Series[(9 x + 1)/((x - 1) (2 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 13 2014 *)
LinearRecurrence[{3,-2},{1,12},40] (* Harvey P. Dale, Oct 26 2015 *)
-
Vec(x*(9*x+1)/((x-1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Mar 11 2014
A139698
Binomial transform of [1, 25, 25, 25, ...].
Original entry on oeis.org
1, 26, 76, 176, 376, 776, 1576, 3176, 6376, 12776, 25576, 51176, 102376, 204776, 409576, 819176, 1638376, 3276776, 6553576, 13107176, 26214376, 52428776, 104857576, 209715176, 419430376, 838860776, 1677721576, 3355443176, 6710886376, 13421772776, 26843545576
Offset: 1
a(3) = 76 = (1, 2, 1) dot (1, 25, 25) = (1 + 50 + 25).
A139700
Binomial transform of [1, 30, 30, 30, ...].
Original entry on oeis.org
1, 31, 91, 211, 451, 931, 1891, 3811, 7651, 15331, 30691, 61411, 122851, 245731, 491491, 983011, 1966051, 3932131, 7864291, 15728611, 31457251, 62914531, 125829091, 251658211, 503316451, 1006632931, 2013265891, 4026531811, 8053063651, 16106127331
Offset: 1
a(3) = 91 = (1, 2, 1) dot (1, 30, 30) = (1 + 60 + 30).
Showing 1-6 of 6 results.
Comments