cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A139751 Primes arising in A139749.

Original entry on oeis.org

2, 3, 5, 7, 2, 3, 5, 7, 5, 7, 11, 13, 11, 13, 17, 17, 19, 23, 5
Offset: 1

Views

Author

Ctibor O. Zizka, May 19 2008

Keywords

A178357 Numbers n such that d(1)^1 + d(2)^2 +...+ d(p)^p and d(1)^p + d(2)^p-1 +...+ d(p)^1 are prime numbers, where d(i), i=1..p, are the digits of n.

Original entry on oeis.org

2, 3, 5, 7, 11, 12, 14, 16, 21, 23, 29, 32, 34, 38, 41, 43, 47, 56, 61, 65, 74, 83, 89, 92, 98, 101, 110, 111, 113, 115, 120, 122, 131, 133, 137, 139, 140, 146, 153, 155, 160, 164, 182, 186, 188, 191, 203, 205, 212, 214, 221, 225, 227, 230, 232, 236, 272, 281, 287, 290, 302, 304, 311, 313, 319, 320, 326, 331
Offset: 1

Views

Author

Michel Lagneau, Dec 21 2010

Keywords

Examples

			1583 is in the sequence because :
1 + 5^2 + 8^3 + 3^4 = 619 and 1^4 + 5^3 + 8^2 + 3^1 = 193 are prime numbers.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 1000 do:l:=length(n):n0:=n:s1:=0:s2:=0:for
      m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v :s1:=s1+u^(l-m+1):s2:=s2+u^m:od:
      if type(s1,prime)=true and type(s2,prime)=true then printf(`%d, `,n):else fi:od:
  • Mathematica
    okQ[n_] := Module[{d=IntegerDigits[n], r}, r=Length[d]; PrimeQ[Total[d^Range[r]]] && PrimeQ[Total[d^Range[r, 1, -1]]]]; Select[Range[1000], okQ]

A330125 Positive integers whose digit-power sum is a prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 12, 14, 16, 21, 23, 25, 27, 32, 38, 41, 45, 49, 52, 54, 56, 58, 61, 65, 72, 78, 83, 85, 87, 94, 101, 110, 111, 113, 115, 122, 124, 128, 131, 139, 142, 146, 148, 151, 155, 164, 166, 182, 184, 193, 199, 212, 214, 218, 221, 223, 227, 232, 236, 238, 241
Offset: 1

Views

Author

Manan Shah, Dec 01 2019

Keywords

Comments

Let M be an N-digit positive integer with digits (base 10) d_1, d_2, d_3, ..., d_N. If Sum_{i = 1..N} (d_i)^N is prime, then M is part of this sequence.
Numbers k such that A101337(k) is prime.
Both A139749 and A178357 are similar and match the first several terms of this sequence, but the digit powers are different. Additionally, perhaps a more interesting sequence is the subsequence of primes: 2, 3, 5, 7, 11, 23, 41, 61, 83.

Examples

			The first four terms are the single-digit primes; a(5) = 11 since 1^2 + 1^2 = 2, which is prime.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L,d,t;
       L:= convert(n,base,10);
       d:= nops(L);
       isprime(add(t^d, t=L))
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Oct 17 2023
  • Mathematica
    Select[Range[250], (d = IntegerDigits[#]; PrimeQ@ Total[d^Length[d]]) &] (* Giovanni Resta, Dec 02 2019 *)
  • PARI
    isok(n) = {my(d = digits(n)); isprime(sum(k=1, #d, d[k]^#d));} \\ Michel Marcus, Dec 05 2019

Extensions

More terms from Giovanni Resta, Dec 02 2019

A140281 A Diophantine equation over digits of n. Numbers n such that x_1/r +x_2/r-1 + ... + x_r/1 = k; x_i digits of n; k integer.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 320, 321, 322, 323, 324, 325, 326
Offset: 0

Views

Author

Ctibor O. Zizka, May 23 2008

Keywords

Examples

			n=321 : 3/3 + 2/2 + 1/1 = 3, 321 belongs to the sequence
		

Crossrefs

Programs

  • Mathematica
    Join[{0},Select[Range[400],IntegerQ[Total[IntegerDigits[#]/Reverse[ Range[ IntegerLength[ #]]]]]&]] (* Harvey P. Dale, May 17 2016 *)
Showing 1-4 of 4 results.