A139764 Smallest term in Zeckendorf representation of n.
1, 2, 3, 1, 5, 1, 2, 8, 1, 2, 3, 1, 13, 1, 2, 3, 1, 5, 1, 2, 21, 1, 2, 3, 1, 5, 1, 2, 8, 1, 2, 3, 1, 34, 1, 2, 3, 1, 5, 1, 2, 8, 1, 2, 3, 1, 13, 1, 2, 3, 1, 5, 1, 2, 55, 1, 2, 3, 1, 5, 1, 2, 8, 1, 2, 3, 1, 13, 1, 2, 3, 1, 5, 1, 2, 21, 1, 2, 3, 1, 5, 1, 2, 8, 1, 2, 3, 1, 89
Offset: 1
Examples
The Zeckendorf representation of 7 = 5 + 2, so a(7) = 2.
References
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.3, p. 82, solution to Problem 179. - From N. J. A. Sloane, Aug 03 2012
Links
- Steve Witham, Table of n, a(n) for n = 1..9999
- Alex Bogomolny, Theory of Take-Away Games
- Sylvain Rocher, Elodie Privat, Laurent Orban, Alexandre Mothe and Laurent Thouy, La stratégie des allumettes
- A. J. Schwenk, Take-Away Games, The Fibonacci Quarterly, v 8, no 3 (1970), 225-234.
- Eric Weisstein's World of Mathematics, Wythoff Array
- Wikipedia, Zeckendorf's theorem
Programs
-
Haskell
a139764 = head . a035517_row -- Reinhard Zumkeller, Mar 10 2013
-
Maple
A000045 := proc(n) combinat[fibonacci](n) ; end: A087172 := proc(n) local a,i ; a := 0 ; for i from 0 do if A000045(i) <= n then a := A000045(i) ; else RETURN(a) ; fi ; od: end: A139764 := proc(n) local nResid,prevF ; nResid := n ; while true do prevF := A087172(nResid) ; if prevF = nResid then RETURN(prevF) ; else nResid := nResid-prevF ; fi ; od: end: seq(A139764(n),n=1..120) ; # R. J. Mathar, May 22 2008
-
Mathematica
f[n_] := (k = 1; ff = {}; While[(fi = Fibonacci[k]) <= n, AppendTo[ff, fi]; k++]; Drop[ff, 1]); a[n_] := First[ If[n == 0, 0, r = n; s = {}; fr = f[n]; While[r > 0, lf = Last[fr]; If[lf <= r, r = r - lf; PrependTo[s, lf]]; fr = Drop[fr, -1]]; s]]; Table[a[n], {n, 1, 89}] (* Jean-François Alcover, Nov 02 2011 *)
-
PARI
a(n)=my(f);forstep(k=log(n*sqrt(5))\log(1.61803)+2, 2, -1, f=fibonacci(k);if(f<=n,n-=f;if(!n,return(f));k--)) \\ Charles R Greathouse IV, Nov 02 2011
Formula
a(n) = n if n is a Fibonacci number, else a( n - (largest Fibonacci number < n) ).
a(n) = the value of the (exactly one) digit that turns on between the Fibonacci-base representations of n-1 and n. E.g., from 6 (1001) to 7 (1010), the two's digit turns on.
a(n) = top element of the column of the Wythoff array that contains n.
a(n) = A035517(n,0). - Reinhard Zumkeller, Mar 10 2013
Extensions
More terms from T. D. Noe and R. J. Mathar, May 22 2008
Comments