A139769 T(n,k) = [x^k] Product_{m=1..n} d/dx Sum_{i=1..m} x^i; triangle read by rows, n >= 0, 0 <= k <= A161680(n).
1, 1, 1, 2, 1, 4, 7, 6, 1, 6, 18, 36, 49, 46, 24, 1, 8, 33, 94, 204, 354, 497, 562, 501, 326, 120, 1, 10, 52, 188, 528, 1222, 2406, 4102, 6116, 7996, 9132, 9014, 7541, 5116, 2556, 720, 1, 12, 75, 326, 1105, 3106, 7513, 16014, 30558, 52752, 82938, 119230, 156983
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1; 1, 2; 1, 4, 7, 6; 1, 6, 18, 36, 49, 46, 24; 1, 8, 33, 94, 204, 354, 497, 562, 501, 326, 120; ...
Links
- Alois P. Heinz, Rows n = 0..50, flattened
- Mathilde Bouvel, Luca Ferrari, and Bridget Eileen Tenner, Between weak and Bruhat: the middle order on permutations, arXiv:2405.08943 [math.CO], 2024.
Programs
-
Mathematica
a := Table[CoefficientList[Product[Sum[D[x^i, x], {i, 1, m}], {m, 1, n}], x], {n, 0, 7}]; Flatten[a]
Formula
From Alois P. Heinz, May 24 2024: (Start)
|Sum_{k=0..binomial(n,2)} (-1)^k T(n,k)| = A010551(n).
Sum_{k=0..binomial(n,2)} (binomial(n,2)-k)*T(n,k) = A259459(n-2) for n>=2. (End)
Extensions
Edited by Alois P. Heinz, May 24 2024
Comments