cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139857 Primes of the form 8x^2 + 15y^2.

Original entry on oeis.org

23, 47, 167, 263, 383, 503, 647, 743, 863, 887, 983, 1103, 1223, 1367, 1487, 1583, 1607, 1823, 1847, 2063, 2087, 2207, 2423, 2447, 2543, 2663, 2687, 2903, 2927, 3023, 3167, 3407, 3527, 3623, 3767, 3863, 4007, 4127, 4463, 4583, 4703, 4943
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant= = -480. See A139827 for more information.
Also primes of the form 12x^2 + 12xy + 23y^2, which has discriminant = -960. - T. D. Noe, May 07 2008
Also primes of the forms 23x^2 + 22xy + 47y^2 and 23x^2 + 8xy + 32y^2. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [ p: p in PrimesUpTo(6000) | p mod 120 in {23, 47}]; // Vincenzo Librandi, Jul 29 2012
    
  • Mathematica
    QuadPrimes2[8, 0, 15, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\8), w=8*x^2; for(y=1, sqrtint((lim-w)\15), if(isprime(t=w+15*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 22 2017

Formula

The primes are congruent to {23, 47} (mod 120).