cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139873 Primes of the form 13x^2 + 4xy + 13y^2.

Original entry on oeis.org

13, 73, 193, 277, 337, 373, 457, 613, 673, 733, 853, 877, 937, 997, 1033, 1117, 1297, 1597, 1657, 1693, 1777, 1933, 1993, 2053, 2437, 2593, 2617, 2713, 2833, 2857, 2917, 3253, 3313, 3373, 3517, 3637, 3673, 4153, 4177, 4297, 4597, 4813, 4957
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant = -660. See A139827 for more information.

Programs

  • Magma
    [ p: p in PrimesUpTo(6000) | p mod 660 in {13, 73, 193, 217, 277, 337, 373, 457, 613, 637}]; // Vincenzo Librandi, Jul 30 2012
  • Mathematica
    Union[QuadPrimes2[13, 4, 13, 10000], QuadPrimes2[13, -4, 13, 10000]] (* see A106856 *)

Formula

The primes are congruent to {13, 73, 193, 217, 277, 337, 373, 457, 613, 637} (mod 660).