cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139913 Primes of the form 17x^2+8xy+17y^2.

Original entry on oeis.org

17, 101, 173, 257, 269, 521, 677, 797, 857, 881, 1013, 1049, 1109, 1193, 1277, 1301, 1361, 1433, 1613, 1637, 1889, 1949, 1973, 2141, 2357, 2393, 2441, 2609, 2729, 2861, 3041, 3449, 3461, 3533, 3617, 3701, 3797, 3821, 4073, 4133, 4157, 4241
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant=-1092. See A139827 for more information.

Programs

  • Magma
    [ p: p in PrimesUpTo(5000) | p mod 1092 in [17, 101, 173, 185, 209, 257, 269, 341, 425, 521, 545, 677, 797, 857, 881, 965, 1013, 1049]]; // Vincenzo Librandi, Aug 01 2012
  • Mathematica
    Union[QuadPrimes2[17, 8, 17, 10000], QuadPrimes2[17, -8, 17, 10000]] (* see A106856 *)

Formula

The primes are congruent to {17, 101, 173, 185, 209, 257, 269, 341, 425, 521, 545, 677, 797, 857, 881, 965, 1013, 1049} (mod 1092).