A139923 Primes of the form 8x^2+39y^2.
47, 71, 167, 239, 359, 383, 431, 479, 743, 839, 863, 983, 1103, 1151, 1319, 1367, 1487, 1607, 2039, 2087, 2111, 2351, 2399, 2423, 2543, 2663, 2711, 2879, 2927, 3023, 3167, 3191, 3359, 3671, 3863, 3911, 4127, 4271, 4583, 4751, 4799, 4919
Offset: 1
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Magma
[ p: p in PrimesUpTo(6000) | p mod 312 in [47, 71, 119, 167, 215, 239]]; // Vincenzo Librandi, Aug 01 2012
-
Mathematica
QuadPrimes2[8, 0, 39, 10000] (* see A106856 *)
Formula
The primes are congruent to {47, 71, 119, 167, 215, 239} (mod 312).
Comments