A139934 Primes of the form 15x^2+22y^2.
37, 103, 157, 223, 367, 397, 463, 487, 727, 757, 823, 1087, 1093, 1213, 1237, 1303, 1423, 1453, 1543, 1567, 1783, 2143, 2293, 2557, 2677, 2797, 2887, 3037, 3463, 3613, 3727, 3733, 3853, 3877, 3943, 4093, 4327, 4357, 4423, 4447, 4783, 4933
Offset: 1
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Magma
[ p: p in PrimesUpTo(6000) | p mod 1320 in [37, 103, 133, 157, 223, 247, 367, 397, 463, 487, 493, 727, 757, 823, 973, 1087, 1093, 1213, 1237, 1303]]; // Vincenzo Librandi, Aug 02 2012
-
Mathematica
QuadPrimes2[15, 0, 22, 10000] (* see A106856 *)
Formula
The primes are congruent to {37, 103, 133, 157, 223, 247, 367, 397, 463, 487, 493, 727, 757, 823, 973, 1087, 1093, 1213, 1237, 1303} (mod 1320).
Comments