A140106 Number of noncongruent diagonals in a regular n-gon.
0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37
Offset: 1
Examples
The square (n=4) has two congruent diagonals; so a(4)=1. The regular pentagon also has congruent diagonals; so a(5)=1. Among all the diagonals in a regular hexagon, there are two noncongruent ones; hence a(6)=2, etc.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Washington Bomfim, Double-star corresponding to the partition [3,7]
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
- Index entries for sequences related to trees
Crossrefs
Programs
-
Magma
A140106:= func< n | n eq 1 select 0 else Floor((n-2)/2) >; [A140106(n): n in [1..80]]; // G. C. Greubel, Feb 10 2023
-
Maple
with(numtheory): for n from 1 to 80 do:it:=0: y:=[fsolve(bernoulli(n,x) , x, complex)] : for m from 1 to nops(y) do : if Re(y[m])<0 then it:=it+1:else fi:od: printf(`%d, `,it):od:
-
Mathematica
a[1]=0; a[n_?OddQ] := (n-3)/2; a[n_] := n/2-1; Array[a, 100] (* Jean-François Alcover, Nov 17 2015 *)
-
PARI
a(n)=if(n>1,n\2-1,0) \\ Charles R Greathouse IV, Oct 16 2015
-
Python
def A140106(n): return n-2>>1 if n>1 else 0 # Chai Wah Wu, Sep 18 2023
-
SageMath
def A140106(n): return 0 if (n==1) else (n-2)//2 [A140106(n) for n in range(1,81)] # G. C. Greubel, Feb 10 2023
Formula
a(n) = floor((n-2)/2), for n > 1, otherwise 0. - Washington Bomfim, Feb 12 2011
G.f.: x^4/(1-x-x^2+x^3). - Colin Barker, Jan 31 2012
Extensions
More terms from Joseph Myers, Sep 05 2009
Comments