cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140133 Decimal expansion of the area enclosed in the lens-shaped region of the Laplace Limit.

Original entry on oeis.org

1, 8, 5, 3, 2, 6, 8, 4, 4, 8, 7, 0, 7, 9, 8, 7, 0, 3, 3, 2, 2, 1, 9, 3, 6, 4, 0, 3, 4, 3, 9, 7, 2, 7, 8, 8, 7, 9, 4, 6, 9, 6, 5, 3, 8, 9, 6, 3, 2, 5, 4, 6, 4, 0, 1, 3, 5, 5, 7, 8, 1, 0, 0, 2, 0, 6, 7, 8, 7, 9, 7, 3, 6, 5, 0, 8, 5, 1, 6, 6, 2, 7, 1, 1, 7, 1, 3, 3, 4, 8, 8, 5, 5, 6, 9, 0, 2, 5, 8, 8
Offset: 1

Views

Author

Jonathan Vos Post, Jun 04 2008

Keywords

Comments

See Weisstein for complex analysis function.

Examples

			1.8532684487079870332219364034397278879469653896325464...
		

Crossrefs

Programs

  • Mathematica
    f[x_] := (Sqrt[x - Tanh[x]]*(x*Csch[x]^2 + 2*x - Coth[x]))/(2* Sqrt[-x + Coth[x]]); xmax = x /. FindRoot[Coth[x] - x == 0, {x, 1}, WorkingPrecision -> 200]; First[ RealDigits[ Chop[ Quiet[ NIntegrate[f[x], {x, 0, xmax}, WorkingPrecision -> 200, MaxRecursion -> 20]]*4], 10, 100]] (* Jean-François Alcover, Jun 07 2012, after D. S. McNeil *)
  • Sage
    def A140133_cons(dps=200):
        from mpmath import mp, sqrt, tanh, coth, csch, findroot, quad
        mp.dps = 2*dps # safety
        def f(x): return 1/2*sqrt(x - tanh(x))*(x*csch(x)^2 + 2*x - coth(x))/sqrt(-x + coth(x))
        xmax = findroot(lambda x: coth(x)-x, 1)
        return quad(f, [0, xmax])*4  # D. S. McNeil, Feb 01 2011