A140158 a(1)=1, a(n) = a(n-1) + n^4 if n odd, a(n) = a(n-1) + n^1 if n is even.
1, 3, 84, 88, 713, 719, 3120, 3128, 9689, 9699, 24340, 24352, 52913, 52927, 103552, 103568, 187089, 187107, 317428, 317448, 511929, 511951, 791792, 791816, 1182441, 1182467, 1713908, 1713936, 2421217, 2421247, 3344768, 3344800, 4530721
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,5,-5,-10,10,10,-10,-5,5,1,-1).
Programs
-
Magma
[(1/120)*(15*(-1 +(-1)^n) + (28 + 60*(-1)^n)*n + 30*n^2 + 20*(1 - 3*(-1)^n)*n^3 + 30*(1 -(-1)^n)*n^4 + 12*n^5): n in [1..50]]; // G. C. Greubel, Jul 05 2018
-
Mathematica
a = {}; r = 4; s = 1; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 1, 100}]; a (* Artur Jasinski *) LinearRecurrence[{1,5,-5,-10,10,10,-10,-5,5,1,-1}, {1, 3, 84, 88, 713, 719, 3120, 3128, 9689, 9699, 24340}, 50] (* or *) Table[(1/120)*(15*(-1 +(-1)^n) + (28 + 60*(-1)^n)*n + 30*n^2 + 20*(1 - 3*(-1)^n)*n^3 + 30*(1 -(-1)^n)*n^4 + 12*n^5), {n,1,50}] (* G. C. Greubel, Jul 05 2018 *) nxt[{n_,a_}]:={n+1,If[EvenQ[n],a+(n+1)^4,a+n+1]}; NestList[nxt,{1,1},40][[;;,2]] (* Harvey P. Dale, Dec 28 2024 *)
-
PARI
for(n=1,50, print1((1/120)*(15*(-1 +(-1)^n) + (28 + 60*(-1)^n)*n + 30*n^2 + 20*(1 - 3*(-1)^n)*n^3 + 30*(1 -(-1)^n)*n^4 + 12*n^5), ", ")) \\ G. C. Greubel, Jul 05 2018
Formula
G.f.: x*(1 + 2*x + 76*x^2 - 6*x^3 + 230*x^4 + 6*x^5 + 76*x^6 - 2*x^7 + x^8)/((1+x)^5*(x-1)^6). - R. J. Mathar, Feb 22 2009