cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140219 Denominator of the coefficient [x^1] of the Bernoulli twin number polynomial C(n,x).

Original entry on oeis.org

1, 1, 2, 2, 6, 6, 6, 6, 10, 10, 6, 6, 210, 210, 2, 2, 30, 30, 42, 42, 110, 110, 6, 6, 546, 546, 2, 2, 30, 30, 462, 462, 170, 170, 6, 6, 51870, 51870, 2, 2, 330, 330, 42, 42, 46, 46, 6, 6, 6630, 6630, 22, 22, 30, 30, 798, 798, 290
Offset: 0

Views

Author

Paul Curtz, Jun 23 2008

Keywords

Comments

See A140351 for the main part of the documentation.

Crossrefs

Cf. A002427, A006955, A048594, A140351 (numerators).

Programs

  • Maple
    C := proc(n, x) if n = 0 then 1; else add(binomial(n-1, j-1)* bernoulli(j, x), j=1..n) ; expand(%) ; end if ; end proc:
    A140219 := proc(n) coeff(C(n, x), x, 1) ; denom(%) ; end proc:
    seq(A140219(n), n=1..80) ; # R. J. Mathar, Sep 22 2011
  • Mathematica
    Table[Sum[Binomial[n, k]*(k+1)*BernoulliB[k], {k, 0, n}], {n, 0, 60}] // Denominator (* Vaclav Kotesovec, Oct 05 2016 *)
  • Maxima
    makelist(denom(sum((binomial(n, i)*(i+1)*bern(i)), i, 0, n)), n, 0, 20); /* Vladimir Kruchinin, Oct 05 2016 */
    
  • PARI
    a(n) = denominator(sum(i=0, n, binomial(n,i)*(i+1)*bernfrac(i))); \\ Michel Marcus, Oct 05 2016

Formula

a(n) = denominator(Sum_{i=0..n} binomial(n,i)*(i+1)*bern(i)). - Vladimir Kruchinin, Oct 05 2016
a(n) = A006955(floor(n/2)). - Georg Fischer, Nov 29 2022