cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140220 a(n) = binomial(n+7, 7)*5^n.

Original entry on oeis.org

1, 40, 900, 15000, 206250, 2475000, 26812500, 268125000, 2513671875, 22343750000, 189921875000, 1553906250000, 12301757812500, 94628906250000, 709716796875000, 5204589843750000, 37407989501953125, 264056396484375000, 1833724975585937500, 12546539306640625000
Offset: 0

Views

Author

Zerinvary Lajos, Jun 23 2008

Keywords

Comments

With a different offset, number of n-permutations (n>=7) of 6 objects: t, u, v, z, x, y with repetition allowed, containing exactly seven (7) u's.
If n=7 then a(0)=1.
Example: a(1)=40 because we have
uuuuuuut, uuuuuuuv, uuuuuuuz, uuuuuuux, uuuuuuuy,
uuuuuutu, uuuuuuvu, uuuuuuzu, uuuuuuxu, uuuuuuyu,
uuuuutuu, uuuuuvuu, uuuuuzuu, uuuuuxuu, uuuuuyuu,
uuuutuuu, uuuuvuuu, uuuuzuuu, uuuuxuuu, uuuuyuuu,
uuutuuuu, uuuvuuuu, uuuzuuuu, uuuxuuuu, uuuyuuuu,
uutuuuuu, uuvuuuuu, uuzuuuuu, uuxuuuuu, uuyuuuuu,
utuuuuuu, uvuuuuuu, uzuuuuuu, uxuuuuuu, uyuuuuuu,
tuuuuuuu, vuuuuuuu, zuuuuuuu, xuuuuuuu, yuuuuuuu.

Programs

  • Magma
    [Binomial(n+7, 7)*5^n: n in [0..20]]; // Vincenzo Librandi, Feb 09 2018
  • Maple
    seq(binomial(n+7,7)*5^n,n=0..18);
  • Mathematica
    Table[Binomial[n+7,7]*5^n,{n,0,20}] (* Harvey P. Dale, Oct 07 2014 *)
    CoefficientList[Series[1 / (1 - 5 x)^8, {x, 0, 33}], x] (* Vincenzo Librandi, Feb 09 2018 *)

Formula

From Chai Wah Wu, Mar 20 2017: (Start)
a(n) = 40*a(n-1) - 700*a(n-2) + 7000*a(n-3) - 43750*a(n-4) + 175000*a(n-5) - 437500*a(n-6) + 625000*a(n-7) - 390625*a(n-8) for n > 7.
G.f.: 1/(1 - 5*x)^8. (End)
From Amiram Eldar, Aug 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 143360*log(5/4) - 191933/6.
Sum_{n>=0} (-1)^n/a(n) = 1632960*log(6/5) - 1786337/6. (End)