A140220 a(n) = binomial(n+7, 7)*5^n.
1, 40, 900, 15000, 206250, 2475000, 26812500, 268125000, 2513671875, 22343750000, 189921875000, 1553906250000, 12301757812500, 94628906250000, 709716796875000, 5204589843750000, 37407989501953125, 264056396484375000, 1833724975585937500, 12546539306640625000
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (40,-700,7000,-43750,175000,-437500,625000,-390625).
Programs
-
Magma
[Binomial(n+7, 7)*5^n: n in [0..20]]; // Vincenzo Librandi, Feb 09 2018
-
Maple
seq(binomial(n+7,7)*5^n,n=0..18);
-
Mathematica
Table[Binomial[n+7,7]*5^n,{n,0,20}] (* Harvey P. Dale, Oct 07 2014 *) CoefficientList[Series[1 / (1 - 5 x)^8, {x, 0, 33}], x] (* Vincenzo Librandi, Feb 09 2018 *)
Formula
From Chai Wah Wu, Mar 20 2017: (Start)
a(n) = 40*a(n-1) - 700*a(n-2) + 7000*a(n-3) - 43750*a(n-4) + 175000*a(n-5) - 437500*a(n-6) + 625000*a(n-7) - 390625*a(n-8) for n > 7.
G.f.: 1/(1 - 5*x)^8. (End)
From Amiram Eldar, Aug 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 143360*log(5/4) - 191933/6.
Sum_{n>=0} (-1)^n/a(n) = 1632960*log(6/5) - 1786337/6. (End)
Comments