A140229 Binomial transform of [1, 3, 3, 1, -2, 3, -4, 5, ...].
1, 4, 10, 20, 33, 49, 68, 90, 115, 143, 174, 208, 245, 285, 328, 374, 423, 475, 530, 588, 649, 713, 780, 850, 923, 999, 1078, 1160, 1245, 1333, 1424, 1518, 1615, 1715, 1818, 1924, 2033, 2145, 2260, 2378, 2499, 2623, 2750, 2880, 3013, 3149, 3288, 3430, 3575
Offset: 1
Examples
a(5) = 33 = (1, 4, 6, 4, 1) dot (1, 3, 3, 1, -2) = (1 + 12 + 18 + 4 - 2).
Links
- İ. H. Karakaş and İ. Aliyev, Problem 8.36, Analiz ve Cebirde İlginç OLİMPİYAT PROBLEMLERİ VE ÇÖZÜMLERİ, TÜBİTAK Publications, 5 (2003), p. 298.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A049777
Programs
-
Magma
[1,4] cat [(n+1)*(3*n-4)/2: n in [3..50]]; // Vincenzo Librandi, Oct 27 2014
-
Maple
1,4,seq((1/2)*(n+1)*(3*n-4), n=3..40); # Emeric Deutsch, May 18 2008
-
Mathematica
s=-2;lst={1, 4};Do[s+=n+1;If[n>3, AppendTo[lst, s]], {n, 0, 6!, 3}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 25 2008 *)
Formula
A007318 * [1, 3, 3, 1, -2, 3, -4, 5,...].
a(n) = (n+1)(3n-4)/2, for n>=3. - Emeric Deutsch, May 18 2008
G.f.: x(1+x+x^2+x^3-x^4)/(1-x)^3. a(n) = 3*a(n-1) -3*a(n-2) + a(n-3), n>5. a(n+1)-a(n) = A016777(n), n>3. - R. J. Mathar, Nov 25 2008
Extensions
More terms from Emeric Deutsch, May 18 2008
More terms from Vladimir Joseph Stephan Orlovsky, Oct 25 2008
Comments