cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140271 Least divisor of n that is > sqrt(n), with a(1) = 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 4, 9, 5, 11, 4, 13, 7, 5, 8, 17, 6, 19, 5, 7, 11, 23, 6, 25, 13, 9, 7, 29, 6, 31, 8, 11, 17, 7, 9, 37, 19, 13, 8, 41, 7, 43, 11, 9, 23, 47, 8, 49, 10, 17, 13, 53, 9, 11, 8, 19, 29, 59, 10, 61, 31, 9, 16, 13, 11, 67, 17, 23, 10, 71, 9, 73, 37, 15, 19, 11, 13, 79, 10, 27
Offset: 1

Views

Author

Leroy Quet, May 16 2008

Keywords

Comments

If n is not a square, then a(n) = A033677(n).
If we define a divisor d|n to be strictly superior if d > n/d, then strictly superior divisors are counted by A056924 and listed by A341673. This sequence selects the smallest strictly superior divisor of n. - Gus Wiseman, Apr 06 2021

Examples

			From _Gus Wiseman_, Apr 06 2021: (Start)
a(n) is the smallest element in the following sets of strictly superior divisors:
   1: {1}       16: {8,16}        31: {31}
   2: {2}       17: {17}          32: {8,16,32}
   3: {3}       18: {6,9,18}      33: {11,33}
   4: {4}       19: {19}          34: {17,34}
   5: {5}       20: {5,10,20}     35: {7,35}
   6: {3,6}     21: {7,21}        36: {9,12,18,36}
   7: {7}       22: {11,22}       37: {37}
   8: {4,8}     23: {23}          38: {19,38}
   9: {9}       24: {6,8,12,24}   39: {13,39}
  10: {5,10}    25: {25}          40: {8,10,20,40}
  11: {11}      26: {13,26}       41: {41}
  12: {4,6,12}  27: {9,27}        42: {7,14,21,42}
  13: {13}      28: {7,14,28}     43: {43}
  14: {7,14}    29: {29}          44: {11,22,44}
  15: {5,15}    30: {6,10,15,30}  45: {9,15,45}
(End)
		

Crossrefs

These divisors are counted by A056924.
These divisors add up to A238535.
These divisors that are odd are counted by A341594.
These divisors that are squarefree are counted by A341595
These divisors that are prime are counted by A341642.
These divisors are listed by A341673.
A038548 counts superior (or inferior) divisors.
A161906 lists inferior divisors.
A161908 lists superior divisors.
A207375 list central divisors.
A341674 lists strictly inferior divisors.
- Strictly Inferior: A070039, A333805, A333806, A341596, A341677.
- Strictly Superior: A048098, A064052, A341643, A341644, A341646.

Programs

  • Maple
    with(numtheory):
    a:= n-> min(select(d-> is(d=n or d>sqrt(n)), divisors(n))):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 29 2018
  • Mathematica
    Table[Select[Divisors[n], # > Sqrt[n] &][[1]], {n, 2, 70}] (* Stefan Steinerberger, May 18 2008 *)
  • PARI
    A140271(n)={local(d,a);d=divisors(n);a=n;for(i=1,length(d),if(d[i]>sqrt(n),a=min (d[i],a)));a} \\ Michael B. Porter, Apr 06 2010

Extensions

More terms from Stefan Steinerberger, May 18 2008
a(70)-a(80) from Ray Chandler, Jun 25 2009
Franklin T. Adams-Watters, Jan 26 2018, added a(1) = 1 to preserve the relation a(n) | n.