A140282 Numbers k such that A000330(k) is multiple of 3.
0, 4, 8, 9, 13, 17, 18, 22, 26, 27, 31, 35, 36, 40, 44, 45, 49, 53, 54, 58, 62, 63, 67, 71, 72, 76, 80, 81, 85, 89, 90, 94, 98, 99, 103, 107, 108, 112, 116, 117, 121, 125, 126, 130, 134, 135, 139, 143, 144, 148, 152, 153, 157, 161, 162, 166, 170, 171, 175, 179, 180, 184
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Crossrefs
Cf. A000330.
Programs
-
Maple
seq(3*(n-floor(n/3)) +n, n= 0..61); # Gary Detlefs, Mar 27 2010
-
Mathematica
s={};Do[If[Mod[m*(1+m)*(1+2*m),18]==0,s={s,m}],{m,0,400}];Flatten[s] Flatten[Position[Accumulate[Range[0,200]^2],?(Mod[#,3]==0&)]]-1 (* or *) LinearRecurrence[{1,0,1,-1},{0,4,8,9},100] (* _Harvey P. Dale, Mar 08 2018 *)
Formula
k*(1 + k)*(1 + 2*k) is multiple of 18; a(0..2)=0,4,8; a(n) = a(n-3) + 9 for n > 2.
a(n) = 3*(n-floor(n/3)) + n. - Gary Detlefs, Mar 27 2010
a(n) = 3*n + A010872(n). - Wesley Ivan Hurt, Jul 07 2013
G.f.: x*(x+2)^2 / ( (1+x+x^2)*(x-1)^2 ). - R. J. Mathar, Jul 13 2013
Comments