cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A140313 First differences of A140298.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 1, 4, 4, 1, 13, 13, 1, 40, 40, 1, 121, 121, 1, 364, 364, 1, 1093, 1093, 1, 3280, 3280, 1, 9841, 9841, 1, 29524, 29524, 1, 88573, 88573, 1, 265720, 265720, 1, 797161, 797161, 1, 2391484, 2391484, 1, 7174453, 7174453, 1, 21523360, 21523360, 1, 64570081
Offset: 0

Views

Author

Paul Curtz, May 25 2008

Keywords

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (x-1)*(x^3+3*x^2+2*x+1)/((3*x^3-1)*(x^2+x+1)) )); // G. C. Greubel, Nov 21 2018
    
  • Mathematica
    CoefficientList[Series[(x - 1) (x^3 + 3 x^2 + 2 x + 1)/((3 x^3 - 1) (x^2 + x + 1)), {x, 0, 52}], x] (* Michael De Vlieger, Nov 05 2018 *)
  • PARI
    Vec((1 - x)*(1 + 2*x + 3*x^2 + x^3)/((1 - 3*x^3)*(1 + x + x^2)) + O(x^40)) \\ Andrew Howroyd, Nov 03 2018
    
  • Sage
    s=((x-1)*(x^3+3*x^2+2*x+1)/((3*x^3-1)*(x^2+x+1))).series(x,50);
    s.coefficients(x, sparse=False) # G. C. Greubel, Nov 21 2018

Formula

Mix 1, A003462(n), A003462(n).
G.f.: (x - 1)*(x^3 + 3*x^2 + 2*x + 1)/((3*x^3 - 1)*(x^2 + x + 1)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009

Extensions

Terms a(33) and beyond from Andrew Howroyd, Nov 03 2018

A216220 Square array T, read by antidiagonals: T(n,k) = 0 if n-k>=2 or if k-n>=4, T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 3, 2, 0, 0, 4, 5, 0, 0, 0, 4, 9, 5, 0, 0, 0, 0, 13, 14, 0, 0, 0, 0, 0, 13, 27, 14, 0, 0, 0, 0, 0, 0, 40, 41, 0, 0, 0, 0, 0, 0, 0, 40, 81, 41, 0, 0, 0, 0, 0, 0, 0, 0, 121, 122, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 13 2013

Keywords

Comments

T(0,2), T(1,1), T(1,2), T(1,3), ... T(n,n), T(n,n+1), T(n,n+2), ... is the sequence A140298.

Examples

			Square array begins:
1, 1, 1,  1,  0,  0,   0,   0, 0, ...
1, 2, 3,  4,  4,  0,   0,   0, 0, ...
0, 2, 5,  9, 13, 13,   0,   0, 0, ...
0, 0, 5, 14, 27, 40,  40,   0, 0, ...
0, 0, 0, 14, 41, 81, 121, 121, 0, ...
...
		

Crossrefs

Formula

T(n,n) = T(n+1,n) = A007051(n).
T(n,n+1) = 3^n = A000244(n).
T(n,n+2) = T(n,n+3) = A003462(n+1).
Sum_{k, 0<=k<=n} T(n-k,k) = A038754(n).
Showing 1-2 of 2 results.