cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A272263 a(n) = numerator of A000032(n) - 1/2^n.

Original entry on oeis.org

1, 1, 11, 31, 111, 351, 1151, 3711, 12031, 38911, 125951, 407551, 1318911, 4268031, 13811711, 44695551, 144637951, 468058111, 1514668031, 4901568511, 15861809151, 51329892351, 166107021311, 537533612031, 1739495309311, 5629125066751, 18216231370751
Offset: 0

Views

Author

Paul Curtz, Apr 24 2016

Keywords

Comments

A000032(n), Lucas numbers, and 1/2^n are autosequences of the second kind.
Then a(n)/2^n is also an autosequence of the second kind.
Their corresponding autosequences of the first kind are A000045(n) and n/2^n, the Oresme numbers.
Difference table of A000032(n) - 1/2^n:
1, 1/2, 11/4, 31/8, 111/16, 351/32, 1151/64, ...
9/4, 9/8, 49/16, 129/32, 449/64, 1409/128, ...
31/16, 31/32, 191/64, 511/128, 1791/256, ...
129/64, 129/128, 769/256, ...
511/256, 511/256, ...
2049/1024, ... .
The first upper diagonal is A140323(n)/A004171(n). The main diagonal is the double, i.e. A140323(n)/A000302(n). The inverse binomial transform is the signed sequence.
Quintisections from a(2):
11, 31, 111, 351, 1151,
3711, 12031, 38911, 125951, 407551,
1318911, 4268031, 13811711, 44695551, 144637951,
etc.

Examples

			Numerators of a(0) =2-1=1, a(1)=1-1/2=1/2, a(2)=3-1/4=11/4, a(3)=4-1/8=31/8, ... .
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - 2*x + 6*x^2)/((1 - x)*(1 - 2*x - 4*x^2)), {x, 0, 30}], x] (* Robert Price, Apr 24 2016 *)
    Table[Numerator[LucasL@ n - 1/2^n], {n, 0, 26}] (* Michael De Vlieger, Apr 24 2016 *)
  • PARI
    Vec((1-2*x+6*x^2)/((1-x)*(1-2*x-4*x^2)) + O(x^50)) \\ Colin Barker, Apr 24 2016

Formula

a(n) = a(n-1) + 10*A085449(n), for n>0, a(0)=1.
a(n) = A087131(n) - 1.
From Colin Barker, Apr 24 2016: (Start)
a(n) = (-1+(1-sqrt(5))^n+(1+sqrt(5))^n).
a(n) = 3*a(n-1)+2*a(n-2)-4*a(n-3) for n>2.
G.f.: (1-2*x+6*x^2) / ((1-x)*(1-2*x-4*x^2)).
(End)

A321632 Expansion of e.g.f. (1 + sin(x))/exp(x).

Original entry on oeis.org

1, 0, -1, 1, 1, -5, 9, -9, 1, 15, -31, 31, 1, -65, 129, -129, 1, 255, -511, 511, 1, -1025, 2049, -2049, 1, 4095, -8191, 8191, 1, -16385, 32769, -32769, 1, 65535, -131071, 131071, 1, -262145, 524289, -524289, 1, 1048575, -2097151, 2097151, 1, -4194305, 8388609, -8388609
Offset: 0

Views

Author

Paolo P. Lava, Nov 16 2018

Keywords

Comments

A140323(n) = |a(4*n-1)| = |a(4*n-2)|, A247281(n) = |a(4*n+1)|.
The absolute values of the coefficients of the expansion of the reciprocal of this function are listed in A186364.

Crossrefs

Programs

  • Maple
    seq(factorial(n)*coeff(series((1+sin(x))/exp(x),x=0,48),x,n),n=0..47);
  • Mathematica
    With[{nn=50},CoefficientList[Series[(1+Sin[x])/Exp[x],{x,0,nn}],x] Range[ 0,nn]!] (* or *) LinearRecurrence[{-3,-4,-2},{1,0,-1},50] (* Harvey P. Dale, Jul 21 2021 *)
  • PARI
    Vec((1 + 3*x + 3*x^2) / ((1 + x)*(1 + 2*x + 2*x^2)) + O(x^40)) \\ Colin Barker, Nov 16 2018

Formula

a(4*k) = 1;
a(4*k+1) = (-4)^k - 1;
a(4*k+2) = -2*a(4*k+1) - 1 = -2*(-4)^k + 1;
a(4*k+3) = 2*a(4*k+1) + 1 = 2*(-4)^k - 1.
From Colin Barker, Nov 16 2018: (Start)
G.f.: (1 + 3*x + 3*x^2) / ((1 + x)*(1 + 2*x + 2*x^2)).
a(n) = (-1)^n + i/2*((-1-i)^n - (-1+i)^n), where i=sqrt(-1).
a(n) = -3*a(n-1) - 4*a(n-2) - 2*a(n-3) for n>2. (End)
Showing 1-2 of 2 results.