A140252 Inverse binomial transform of A140420.
0, 1, 1, 7, 7, 31, 31, 127, 127, 511, 511, 2047, 2047, 8191, 8191, 32767, 32767, 131071, 131071, 524287, 524287, 2097151, 2097151, 8388607, 8388607, 33554431, 33554431, 134217727, 134217727, 536870911, 536870911
Offset: 0
Keywords
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Wolfram Research, Wolfram Atlas of Simple Programs
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (1, 4, -4).
Programs
-
Mathematica
Join[{0},LinearRecurrence[{1,4,-4},{1,1,7},30]] (* Harvey P. Dale, May 28 2012 *)
Formula
a(2n+1) = a(2n+2)= A083420(n).
a(n+1)-2a(n) = (-1)^n*A014551(n), n>0.
a(n+1)-2a(n)-1 = 2*(-1)^n*A131577(n).
O.g.f.: x(1+2x^2)/((2x-1)(1+2x)(x-1)). - R. J. Mathar, Aug 02 2008
a(n) = a(n-1)+4*a(n-2)-4*a(n-3), a(0)=0, a(1)=1, a(2)=1, a(3)=7. - Harvey P. Dale, May 28 2012
Extensions
Edited and extended by R. J. Mathar, Aug 02 2008
Comments