A140472 a(n) = a(n - a(n-1)) + a(floor(n/2)).
0, 1, 2, 2, 4, 3, 4, 4, 8, 5, 6, 6, 8, 7, 8, 8, 16, 9, 10, 10, 12, 11, 12, 12, 16, 13, 14, 14, 16, 15, 16, 16, 32, 17, 18, 18, 20, 19, 20, 20, 24, 21, 22, 22, 24, 23, 24, 24, 32, 25, 26, 26, 28, 27, 28, 28, 32, 29, 30, 30, 32, 31, 32, 32, 64, 33, 34, 34, 36, 35, 36, 36, 40, 37, 38
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A214546 (first differences).
Same as A109168, if a(0) = 0 is omitted. - M. F. Hasler, Oct 19 2019
Programs
-
Haskell
a140472 n = a140472_list !! n a140472_list = 0 : 1 : h 2 1 where h x y = z : h (x + 1) z where z = a140472 (x - y) + a140472 (x `div` 2) -- Reinhard Zumkeller, Jul 20 2012
-
Magma
I:=[1,2]; [0] cat [n le 2 select I[n] else Self(n-Self(n-1))+Self(Floor((n) div 2)):n in [1..75]]; // Marius A. Burtea, Aug 16 2019
-
Mathematica
a[0] = 0; a[1] = 1; a[n_] := a[n] = a[n - a[n - 1]] + a[Floor[n/2]]; Table[a[n], {n, 0, 200}]
-
PARI
a(n)=(n+bitand(n,-n))\2 \\ M. F. Hasler, Oct 19 2019
Formula
a(0) = 0; a(1) = a(2) = 1; a(n) = a(n - a(n-1)) + a(floor(n/2)).
a(n) = A285326(n)/2, equivalent to the above: see comments for the proof. - M. F. Hasler, Oct 19 2019
Extensions
Offset corrected by Reinhard Zumkeller, Jul 20 2012
Comments