A140490 Trajectory of 1 under repeated application of the map: n -> n + third-smallest number that does not divide n.
1, 5, 9, 14, 19, 23, 27, 32, 38, 43, 47, 51, 56, 62, 67, 71, 75, 81, 86, 91, 95, 99, 104, 110, 116, 122, 127, 131, 135, 141, 146, 151, 155, 159, 164, 170, 176, 182, 187, 191, 195, 201, 206, 211, 215, 219, 224, 230, 236, 242, 247, 251, 255, 261, 266, 271, 275, 279, 284, 290, 296
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,1,-1).
Crossrefs
Programs
-
Maple
f:= proc(n) local k,count; count:= 0; for k from 2 do if n mod k <> 0 then count:= count+1; if count = 3 then return n+k fi fi od end proc: R:= 1: x:= 1: for i from 1 to 100 do x:= f(x); R:= R, x od: R; # Robert Israel, Jan 17 2023
-
Mathematica
NestList[#+Complement[Range[#+50],Divisors[#]][[3]]&,1,60] (* Harvey P. Dale, Apr 21 2022 *)
-
PARI
third(n) = {my(nb = 0, k = 1); while (nb != 3, if (n % k, nb++); if (nb != 3, k++);); k;} f(n) = n + third(n); lista1(nn) = {a = 1; print1(a, ", "); for (n=2, nn, newa = f(a); print1(newa, ", "); a = f(a););} \\ Michel Marcus, Oct 04 2018
Formula
a(n+12) = a(n) + 60 for n >= 13. - Robert Israel, Jan 17 2023
From Chai Wah Wu, Nov 14 2024: (Start)
a(n) = a(n-1) + a(n-12) - a(n-13) for n > 25.
G.f.: x*(x^24 + 2*x^23 + x^22 - x^21 - 2*x^20 + x^18 + 2*x^17 - x^16 - x^15 + x^14 + 2*x^13 + 4*x^12 + 4*x^11 + 4*x^10 + 5*x^9 + 6*x^8 + 5*x^7 + 4*x^6 + 4*x^5 + 5*x^4 + 5*x^3 + 4*x^2 + 4*x + 1)/(x^13 - x^12 - x + 1). (End)
Extensions
More terms from Michel Marcus, Oct 04 2018
Comments