cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140490 Trajectory of 1 under repeated application of the map: n -> n + third-smallest number that does not divide n.

Original entry on oeis.org

1, 5, 9, 14, 19, 23, 27, 32, 38, 43, 47, 51, 56, 62, 67, 71, 75, 81, 86, 91, 95, 99, 104, 110, 116, 122, 127, 131, 135, 141, 146, 151, 155, 159, 164, 170, 176, 182, 187, 191, 195, 201, 206, 211, 215, 219, 224, 230, 236, 242, 247, 251, 255, 261, 266, 271, 275, 279, 284, 290, 296
Offset: 1

Views

Author

Jacques Tramu, Jun 25 2008

Keywords

Comments

Suggested by Eric Angelini.

Crossrefs

Cf. A140485, A140486, A140487, A140488, A140489 (second-smallest sequences).
Cf. A140491, A140492, A140493, A140494 (third-smallest sequences).

Programs

  • Maple
    f:= proc(n) local k,count;
      count:= 0;
      for k from 2 do
        if n mod k <> 0 then count:= count+1; if count = 3 then return n+k fi fi
      od
    end proc:
    R:= 1: x:= 1:
    for i from 1 to 100 do x:= f(x); R:= R, x od:
    R; # Robert Israel, Jan 17 2023
  • Mathematica
    NestList[#+Complement[Range[#+50],Divisors[#]][[3]]&,1,60] (* Harvey P. Dale, Apr 21 2022 *)
  • PARI
    third(n) = {my(nb = 0, k = 1); while (nb != 3, if (n % k, nb++); if (nb != 3, k++);); k;}
    f(n) = n + third(n);
    lista1(nn) = {a = 1; print1(a, ", "); for (n=2, nn, newa = f(a); print1(newa, ", "); a = f(a););} \\ Michel Marcus, Oct 04 2018

Formula

a(n+12) = a(n) + 60 for n >= 13. - Robert Israel, Jan 17 2023
From Chai Wah Wu, Nov 14 2024: (Start)
A140490-A140493 all converge to the same trajectory.
a(n) = a(n-1) + a(n-12) - a(n-13) for n > 25.
G.f.: x*(x^24 + 2*x^23 + x^22 - x^21 - 2*x^20 + x^18 + 2*x^17 - x^16 - x^15 + x^14 + 2*x^13 + 4*x^12 + 4*x^11 + 4*x^10 + 5*x^9 + 6*x^8 + 5*x^7 + 4*x^6 + 4*x^5 + 5*x^4 + 5*x^3 + 4*x^2 + 4*x + 1)/(x^13 - x^12 - x + 1). (End)

Extensions

More terms from Michel Marcus, Oct 04 2018