A140492 Trajectory of 3 under repeated application of the map: n -> n + third-smallest number that does not divide n.
3, 8, 14, 19, 23, 27, 32, 38, 43, 47, 51, 56, 62, 67, 71, 75, 81, 86, 91, 95, 99, 104, 110, 116, 122, 127, 131, 135, 141, 146, 151, 155, 159, 164, 170, 176, 182, 187, 191, 195, 201, 206, 211, 215, 219, 224, 230, 236, 242, 247, 251, 255, 261, 266, 271, 275
Offset: 1
Keywords
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,1,-1).
Crossrefs
Programs
-
Mathematica
Join[{3},NestList[#+Complement[Range[#],Divisors[#]][[3]]&,8,50]] (* Harvey P. Dale, Apr 04 2015 *)
-
PARI
third(n) = {my(nb = 0, k = 1); while (nb != 3, if (n % k, nb++); if (nb != 3, k++);); k;} f(n) = n + third(n); lista3(nn) = {a = 3; print1(a, ", "); for (n=2, nn, newa = f(a); print1(newa, ", "); a = f(a););} \\ Michel Marcus, Oct 04 2018
Formula
From Chai Wah Wu, Nov 14 2024: (Start)
a(n) = a(n-1) + a(n-12) - a(n-13) for n > 24.
G.f.: x*(x^23 + 2*x^22 + x^21 - x^20 - 2*x^19 + x^17 + 2*x^16 - x^15 - 2*x^14 + 3*x^12 + 5*x^11 + 4*x^10 + 4*x^9 + 5*x^8 + 6*x^7 + 5*x^6 + 4*x^5 + 4*x^4 + 5*x^3 + 6*x^2 + 5*x + 3)/(x^13 - x^12 - x + 1). (End)
Extensions
More terms from Harvey P. Dale, Apr 04 2015