cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140493 Trajectory of 4 under repeated application of the map: n -> n + third-smallest number that does not divide n.

Original entry on oeis.org

4, 10, 16, 22, 27, 32, 38, 43, 47, 51, 56, 62, 67, 71, 75, 81, 86, 91, 95, 99, 104, 110, 116, 122, 127, 131, 135, 141, 146, 151, 155, 159, 164, 170, 176, 182, 187, 191, 195, 201, 206, 211, 215, 219, 224, 230, 236, 242, 247, 251, 255, 261, 266, 271, 275, 279, 284, 290, 296
Offset: 1

Views

Author

Jacques Tramu, Jun 25 2008

Keywords

Crossrefs

Cf. A140485, A140486, A140487, A140488, A140489 (second-smallest sequences).
Cf. A140491, A140492, A140493, A140494 (third-smallest sequences).

Programs

  • Mathematica
    NestList[Complement[Range[#+10],Divisors[#]][[3]]+#&,4,60] (* Harvey P. Dale, Aug 28 2023 *)
  • PARI
    third(n) = {my(nb = 0, k = 1); while (nb != 3, if (n % k, nb++); if (nb != 3, k++);); k;}
    f(n) = n + third(n);
    lista4(nn) = {a = 4; print1(a, ", "); for (n=2, nn, newa = f(a); print1(newa, ", "); a = f(a););} \\ Michel Marcus, Oct 04 2018

Formula

From Chai Wah Wu, Nov 14 2024: (Start)
A140490-A140493 all converge to the same trajectory.
a(n) = a(n-1) + a(n-12) - a(n-13) for n > 23.
G.f.: x*(x^22 + 2*x^21 + x^20 - x^19 - 2*x^18 - 2*x^14 - 2*x^13 + x^12 + 6*x^11 + 5*x^10 + 4*x^9 + 4*x^8 + 5*x^7 + 6*x^6 + 5*x^5 + 5*x^4 + 6*x^3 + 6*x^2 + 6*x + 4)/(x^13 - x^12 - x + 1). (End)

Extensions

More terms from Michel Marcus, Oct 04 2018