cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140585 Total number of all hierarchical orderings for all set partitions of n.

Original entry on oeis.org

1, 4, 20, 129, 1012, 9341, 99213, 1191392, 15958404, 235939211, 3817327362, 67103292438, 1273789853650, 25973844914959, 566329335460917, 13150556885604115, 324045146807055210, 8446201774570017379, 232198473069120178475, 6715304449424099384968
Offset: 1

Views

Author

Thomas Wieder, May 17 2008

Keywords

Examples

			We are considering all set partitions of the n-set {1,2,3,...,n}.
For each such set partition we examine all possible hierarchical arrangements of the subsets. A hierarchy is a distribution of elements (sets in the present case) onto levels.
A distribution onto levels is "hierarchical" if a level L+1 contains at most as many elements as level L. Thus for n=4 the arrangement {1,2}:{3}{4} is not allowed.
Let the colon ":" separate two consecutive levels L and L+1.
n=2 --> 1+3=4
{1,2} {1}{2}
{1}:{2}
{2}:{1}
-----------------------
n=3 --> 1+9+10=20
1*1 3*3=9 1*10
{1,2,3} {1,2}{3} {1}{2}{3}
{1,3}{2}
{2,3}{1} {1}{2}:{3}
{3}{1}:{2}
{1,2}:{3} {2}{3}:{1}
{1,3}:{2}
{2,3}:{1} {1}:{2}:{3}
{3}:{1}:{2}
{3}:{1,2} {2}:{3}:{1}
{2}:{1,3} {1}:{3}:{2}
{1}:{2,3} {2}:{1}:{3}
{3}:{2}:{1}
-----------------------
n=4 --> 1+12+9+60+47=129
1*1 4*3=12 3*3=9 6*10=60 1*47
{1,2,3,4} {1,2,3}{4} {1,2}{3,4} {1,2}{3}{4} {1}{2}{3}{4}
{1,2,4}{3} {1,3}{2,4} {1,2}{3}:{4}
{1,3,4}{2} {1,4}{2,3} {1,2}{4}:{3} {1}{2}:{3}:{4}
{2,3,4}{1} {1}{2}:{3,4} {1}{3}:{2}:{4}
{1,2}:{3,4} {1,2}:{3}:{4} {1}{4}:{2}:{3}
{1,2,3}:{4} {1,3}:{2,4} {1,2}:{4}:{3} {1}{2}:{4}:{3}
{1,2,4}:{3} {1,4}:{2,3} {1}:{2}:{3,4} {1}{3}:{4}:{2}
{1,3,4}:{2} {3,4}:{1,2} {2}:{1}:{3,4} {1}{4}:{3}:{2}
{2,3,4}:{1} {2,4}:{1,3} {1}:{3,4}:{2}
{2,3}:{1,4} {2}:{3,4}:{1} {2}{3}:{1}:{4}
{4}:{1,2,3} {2}{4}:{1}:{3}
{3}:{1,2,4} likewise for: {2}{3}:{4}:{1}
{2}:{1,3,4} {3,4}{1}{2} {2}{4}:{3}:{1}
{1}:{2,3,4} {2,4}{1}{3}
{2,3}{1}{4} {3}{4}:{1}:{2}
{1,4}{2}{3} {3}{4}:{2}:{1}
{1,3}{2}{4}
{1}{2}:{3}{4}
{1}{3}:{2}{4}
{1}{4}:{2}{3}
{2}{3}:{1}{4}
{2}{4}:{1}{3}
{3}{4}:{1}{2}
{2}{3}{4}:{1}
{1}{3}{4}:{2}
{1}{2}{4}:{3}
{1}{2}{3}:{4}
{1}:{2}:{3}:{4}
+23 permutations
		

Crossrefs

Programs

  • Maple
    A140585 := proc(n::integer) local k, Result; Result:=0: for k from 1 to n do Result:=Result+stirling2(n,k)*A005651(k); end do; lprint(Result); end proc;
    E.g.f.: series(1/mul(1-(exp(x)-1)^k/k!,k=1..10),x=0,10). # Thomas Wieder, Sep 04 2008
    # second Maple program:
    with(numtheory): b:= proc(k) option remember; add(d/d!^(k/d), d=divisors(k)) end: c:= proc(n) option remember; `if`(n=0, 1, add((n-1)!/ (n-k)!* b(k)* c(n-k), k=1..n)) end: a:= n-> add(Stirling2(n, k) *c(k), k=1..n): seq(a(n), n=1..30); # Alois P. Heinz, Oct 10 2008
  • Mathematica
    Table[n!*SeriesCoefficient[1/Product[(1-(E^x-1)^k/k!),{k,1,n}],{x,0,n}],{n,1,20}] (* Vaclav Kotesovec, Sep 03 2014 *)

Formula

Stirling transform of A005651 = Sum of multinomial coefficients: a(n) = Sum_{i=1..n} S2(n,k) A005651(k).
E.g.f.: 1/Product_{k>=1} (1 - (exp(x)-1)^k/k!). - Thomas Wieder, Sep 04 2008
a(n) ~ c * n! / (log(2))^n, where c = 1/(2*log(2)) * Product_{k>=2} 1/(1-1/k!) = A247551 / (2*log(2)) = 1.82463230250447246267598544320244231645906135137... . - Vaclav Kotesovec, Sep 04 2014, updated Jan 21 2017

Extensions

More terms from Alois P. Heinz, Oct 10 2008