A140670 a(n) = 1 if n is odd; otherwise, a(n) = 2^k - 1 where 2^k is the largest power of 2 that divides n.
1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 15, 1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 31, 1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 15, 1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 63, 1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 15, 1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 31, 1, 1, 1, 3, 1, 1
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
Mathematica
a[n_] := If[OddQ[n], 1, 2^IntegerExponent[n, 2] - 1]; Array[a, 100] (* Amiram Eldar, Oct 22 2022 *)
-
PARI
{a(n) = if(n==0, 0, if(n%2, 1, 2^valuation(n, 2) - 1))}
-
Python
def A140670(n): return max(1,(n&-n)-1) # Chai Wah Wu, Jul 08 2022
Formula
a(n) is multiplicative with a(2^e) = 2^e - 1 if e > 0, a(p^e) = 1 if p > 2.
a(2*n + 1) = 1. a(-n) = a(n). a(2*n) = 2 * a(n) + (-1)^n unless n=0.
Dirichlet g.f.: zeta(s)*(1+2^(1-2s)-2^(1-s))/(1-2^(1-s)). - R. J. Mathar, Feb 07 2011
a(n) = (2*A160467(n))-1. - Antti Karttunen, Nov 18 2017
Sum_{k=1..n} a(k) ~ (1/(2*log(2))) * (n*log(n) + (gamma + log(2)/2 - 1) * n), where gamma is Euler's constant (A001620). - Amiram Eldar, Oct 22 2022