cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A204892 Least k such that n divides s(k)-s(j) for some j in [1,k), where s(k)=prime(k).

Original entry on oeis.org

2, 3, 3, 4, 4, 5, 7, 5, 5, 6, 6, 7, 10, 7, 7, 8, 8, 9, 13, 9, 9, 10, 16, 10, 16, 10, 10, 11, 11, 12, 19, 12, 20, 12, 12, 13, 22, 13, 13, 14, 14, 15, 24, 15, 15, 16, 25, 16, 26, 16, 16, 17, 29, 17, 30, 17, 17, 18, 18, 19, 31, 19, 32, 19, 19, 20, 33, 20, 20, 21
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2012

Keywords

Comments

Suppose that (s(i)) is a strictly increasing sequence in the set N of positive integers. For i in N, let r(h) be the residue of s(i+h)-s(i) mod n, for h=1,2,...,n+1. There are at most n distinct residues r(h), so that there must exist numbers h and h' such that r(h)=r(h'), where 0<=h
Corollary: for each n, there are infinitely many pairs (j,k) such that n divides s(k)-s(j), and this result holds if s is assumed unbounded, rather than strictly increasing.
Guide to related sequences:
...
s(n)=prime(n), primes
... k(n), j(n): A204892, A204893
... s(k(n)),s(j(n)): A204894, A204895
... s(k(n))-s(j(n)): A204896, A204897
s(n)=prime(n+1), odd primes
... k(n), j(n): A204900, A204901
... s(k(n)),s(j(n)): A204902, A204903
... s(k(n))-s(j(n)): A109043(?), A000034(?)
s(n)=prime(n+2), primes >=5
... k(n), j(n): A204908, A204909
... s(k(n)),s(j(n)): A204910, A204911
... s(k(n))-s(j(n)): A109043(?), A000034(?)
s(n)=prime(n)*prime(n+1) product of consecutive primes
... k(n), j(n): A205146, A205147
... s(k(n)),s(j(n)): A205148, A205149
... s(k(n))-s(j(n)): A205150, A205151
s(n)=(prime(n+1)+prime(n+2))/2: averages of odd primes
... k(n), j(n): A205153, A205154
... s(k(n)),s(j(n)): A205372, A205373
... s(k(n))-s(j(n)): A205374, A205375
s(n)=2^(n-1), powers of 2
... k(n), j(n): A204979, A001511(?)
... s(k(n)),s(j(n)): A204981, A006519(?)
... s(k(n))-s(j(n)): A204983(?), A204984
s(n)=2^n, powers of 2
... k(n), j(n): A204987, A204988
... s(k(n)),s(j(n)): A204989, A140670(?)
... s(k(n))-s(j(n)): A204991, A204992
s(n)=C(n+1,2), triangular numbers
... k(n), j(n): A205002, A205003
... s(k(n)),s(j(n)): A205004, A205005
... s(k(n))-s(j(n)): A205006, A205007
s(n)=n^2, squares
... k(n), j(n): A204905, A204995
... s(k(n)),s(j(n)): A204996, A204997
... s(k(n))-s(j(n)): A204998, A204999
s(n)=(2n-1)^2, odd squares
... k(n), j(n): A205378, A205379
... s(k(n)),s(j(n)): A205380, A205381
... s(k(n))-s(j(n)): A205382, A205383
s(n)=n(3n-1), pentagonal numbers
... k(n), j(n): A205138, A205139
... s(k(n)),s(j(n)): A205140, A205141
... s(k(n))-s(j(n)): A205142, A205143
s(n)=n(2n-1), hexagonal numbers
... k(n), j(n): A205130, A205131
... s(k(n)),s(j(n)): A205132, A205133
... s(k(n))-s(j(n)): A205134, A205135
s(n)=C(2n-2,n-1), central binomial coefficients
... k(n), j(n): A205010, A205011
... s(k(n)),s(j(n)): A205012, A205013
... s(k(n))-s(j(n)): A205014, A205015
s(n)=(1/2)C(2n,n), (1/2)*(central binomial coefficients)
... k(n), j(n): A205386, A205387
... s(k(n)),s(j(n)): A205388, A205389
... s(k(n))-s(j(n)): A205390, A205391
s(n)=n(n+1), oblong numbers
... k(n), j(n): A205018, A205028
... s(k(n)),s(j(n)): A205029, A205030
... s(k(n))-s(j(n)): A205031, A205032
s(n)=n!, factorials
... k(n), j(n): A204932, A204933
... s(k(n)),s(j(n)): A204934, A204935
... s(k(n))-s(j(n)): A204936, A204937
s(n)=n!!, double factorials
... k(n), j(n): A204982, A205100
... s(k(n)),s(j(n)): A205101, A205102
... s(k(n))-s(j(n)): A205103, A205104
s(n)=3^n-2^n
... k(n), j(n): A205000, A205107
... s(k(n)),s(j(n)): A205108, A205109
... s(k(n))-s(j(n)): A205110, A205111
s(n)=Fibonacci(n+1)
... k(n), j(n): A204924, A204925
... s(k(n)),s(j(n)): A204926, A204927
... s(k(n))-s(j(n)): A204928, A204929
s(n)=Fibonacci(2n-1)
... k(n), j(n): A205442, A205443
... s(k(n)),s(j(n)): A205444, A205445
... s(k(n))-s(j(n)): A205446, A205447
s(n)=Fibonacci(2n)
... k(n), j(n): A205450, A205451
... s(k(n)),s(j(n)): A205452, A205453
... s(k(n))-s(j(n)): A205454, A205455
s(n)=Lucas(n)
... k(n), j(n): A205114, A205115
... s(k(n)),s(j(n)): A205116, A205117
... s(k(n))-s(j(n)): A205118, A205119
s(n)=n*(2^(n-1))
... k(n), j(n): A205122, A205123
... s(k(n)),s(j(n)): A205124, A205125
... s(k(n))-s(j(n)): A205126, A205127
s(n)=ceiling[n^2/2]
... k(n), j(n): A205394, A205395
... s(k(n)),s(j(n)): A205396, A205397
... s(k(n))-s(j(n)): A205398, A205399
s(n)=floor[(n+1)^2/2]
... k(n), j(n): A205402, A205403
... s(k(n)),s(j(n)): A205404, A205405
... s(k(n))-s(j(n)): A205406, A205407

Examples

			Let s(k)=prime(k).  As in A204890, the ordering of differences s(k)-s(j), follows from the arrangement shown here:
k...........1..2..3..4..5...6...7...8...9
s(k)........2..3..5..7..11..13..17..19..23
...
s(k)-s(1)......1..3..5..9..11..15..17..21..27
s(k)-s(2).........2..4..8..10..14..16..20..26
s(k)-s(3)............2..6..8...12..14..18..24
s(k)-s(4)...............4..6...10..12..16..22
...
least (k,j) such that 1 divides s(k)-s(j) for some j is (2,1), so a(1)=2.
least (k,j) such that 2 divides s(k)-s(j): (3,2), so a(2)=3.
least (k,j) such that 3 divides s(k)-s(j): (3,1), so a(3)=3.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Prime[n]; z1 = 400; z2 = 50;
    Table[s[n], {n, 1, 30}]          (* A000040 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j],
       {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]          (* A204890 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = First[Delete[w[n],
       Position[w[n], 0]]]
    Table[d[n], {n, 1, z2}]          (* A204891 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
    m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
    j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
    Table[k[n], {n, 1, z2}]          (* A204892 *)
    Table[j[n], {n, 1, z2}]          (* A204893 *)
    Table[s[k[n]], {n, 1, z2}]       (* A204894 *)
    Table[s[j[n]], {n, 1, z2}]       (* A204895 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]     (* A204896 *)
    Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A204897 *)
    (* Program 2: generates A204892 and A204893 rapidly *)
    s = Array[Prime[#] &, 120];
    lk = Table[NestWhile[# + 1 &, 1, Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1, Length[s]}]
    Table[NestWhile[# + 1 &, 1, Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &], {j, 1, Length[lk]}]
    (* Peter J. C. Moses, Jan 27 2012 *)
  • PARI
    a(n)=forprime(p=n+2,,forstep(k=p%n,p-1,n,if(isprime(k), return(primepi(p))))) \\ Charles R Greathouse IV, Mar 20 2013

A135481 a(n) = 2^A007814(n+1) - 1.

Original entry on oeis.org

0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 15, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 31, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 15, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 63, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 15, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 31, 0, 1, 0, 3, 0, 1, 0
Offset: 0

Author

N. J. A. Sloane, based on a message from Guy Steele and Don Knuth, Mar 01 2008

Keywords

Comments

This is Guy Steele's sequence GS(1, 6) (see A135416).

Crossrefs

Cf. A006519, A007814, A135416, A140670, A136013 (partial sums).

Programs

Formula

a(n) = A006519(n+1) - 1. - R. J. Mathar, Feb 10 2016

Extensions

a(0) = 0 prepended by Andrey Zabolotskiy, Oct 08 2019, based on Lothar Esser's contribution

A204987 Least k such that n divides 2^k - 2^j for some j satisfying 1 <= j < k.

Original entry on oeis.org

2, 2, 3, 3, 5, 3, 4, 4, 7, 5, 11, 4, 13, 4, 5, 5, 9, 7, 19, 6, 7, 11, 12, 5, 21, 13, 19, 5, 29, 5, 6, 6, 11, 9, 13, 8, 37, 19, 13, 7, 21, 7, 15, 12, 13, 12, 24, 6, 22, 21, 9, 14, 53, 19, 21, 6, 19, 29, 59, 6, 61, 6, 7, 7, 13, 11, 67, 10, 23, 13, 36, 9, 10, 37, 21, 20, 31, 13, 40, 8, 55, 21, 83, 8, 9, 15, 29, 13
Offset: 1

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

See A204892 for a discussion and guide to related sequences.

Examples

			1 divides 2^2 - 2^1, so a(1)=2;
2 divides 2^2 - 2^1, so a(2)=2;
3 divides 2^3 - 2^1, so a(3)=3;
4 divides 2^3 - 2^2, so a(4)=3;
5 divides 2^5 - 2^1, so a(5)=5.
		

Programs

  • Mathematica
    s[n_] := s[n] = 2^n; z1 = 1000; z2 = 50;
    Table[s[n], {n, 1, 30}]     (* A000079 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]     (* A204985 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]]
    Table[d[n], {n, 1, z2}]     (* A204986 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
    m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
    j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
    Table[k[n], {n, 1, z2}]     (* A204987 *)
    Table[j[n], {n, 1, z2}]     (* A204988 *)
    Table[s[k[n]], {n, 1, z2}]  (* A204989 *)
    Table[s[j[n]], {n, 1, z2}]  (* A140670 ? *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]     (* A204991 *)
    Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A204992 *)
    %%/2  (* A204990=(1/2)*A204991 *)
  • PARI
    A204987etA204988(n) = { my(k=2); while(1,for(j=1,k-1,if(!(((2^k)-(2^j))%n),return([k,j]))); k++); }; \\ (Computes also A204988 at the same time) - Antti Karttunen, Nov 19 2017
    
  • PARI
    a(n)={my(k=valuation(n,2)); max(k, 1) + znorder(Mod(2, n>>k))} \\ Andrew Howroyd, Aug 08 2018

Formula

a(n) = max(1, A007814(n)) + A007733(n). - Andrew Howroyd, Aug 08 2018

Extensions

More terms from Antti Karttunen, Nov 19 2017

A160467 a(n) = 1 if n is odd; otherwise, a(n) = 2^(k-1) where 2^k is the largest power of 2 that divides n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 16, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 32, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 16
Offset: 1

Author

Johannes W. Meijer, May 24 2009, Jun 28 2011

Keywords

Comments

Fifth factor of the row sums A160466 of the Eta triangle A160464.
From Peter Luschny, May 31 2009: (Start)
Let odd(n) be the characteristic function of the odd numbers (A000035) and sigma(n) the number of 1's in binary expansion of n (A000120). Then a(n) = 2^(sigma(n-1) - sigma(n) + odd(n)).
Let B_{n} be the Bernoulli number. Then this sequence is also
a(n) = denominator(4*(4^n-1)*B_{2*n}/n). (End)

Programs

  • Maple
    nmax:=96: p:= floor(log[2](nmax)): for n from 1 to nmax do a(n):=1 end do: for q from 1 to p do for n from 1 to nmax do if n mod 2^q = 0 then a(n):= 2^(q-1) end if: end do: end do: seq(a(n), n=1..nmax);
    From Peter Luschny, May 31 2009: (Start)
    a := proc(n) local sigma; sigma := proc(n) local i; add(i,i=convert(n,base,2)) end; 2^(sigma(n-1)-sigma(n)+`if`(type(n,odd),1,0)) end: seq(a(n), n=1..96);
    a := proc(n) denom(4*(4^n-1)*bernoulli(2*n)/n) end: seq(a(n), n=1..96); (End)
  • Mathematica
    a[n_] := If[OddQ[n], 1, 2^(IntegerExponent[n, 2] - 1)]; Array[a, 100] (* Amiram Eldar, Jul 02 2020 *)
  • PARI
    A160467(n) = 2^max(valuation(n,2)-1,0); \\ Antti Karttunen, Nov 18 2017, after Max Alekseyev's Feb 09 2011 formula.
    
  • Python
    def A160467(n): return max(1,(n&-n)>>1) # Chai Wah Wu, Jul 08 2022

Formula

a(n) = A026741(n)/A000265(n). - Paul Curtz, Apr 18 2010
a(n) = 2^max(A007814(n) - 1, 0). - Max Alekseyev, Feb 09 2011
a((2*n-1)*2^p) = A011782(p), p >= 0 and n >= 1. - Johannes W. Meijer, Jan 25 2013
a(n) = (1 + A140670(n))/2. - Antti Karttunen, Nov 18 2017
From Amiram Eldar, Dec 31 2022: (Start)
Dirichlet g.f.: zeta(s)*(2^s-2+1/2^s)/(2^s-2).
Sum_{k=1..n} a(k) ~ (1/(4*log(2)))*n*log(n) + (5/8 + (gamma-1)/(4*log(2)))*n, where gamma is Euler's constant (A001620). (End)
a(n) = A006519(n)/gcd(n,2). - Ridouane Oudra, Feb 08 2025
a(n) = A000010(A006519(n)). - Ridouane Oudra, Jul 27 2025

Extensions

Keyword mult added by Max Alekseyev, Feb 09 2011
Name changed by Antti Karttunen, Nov 18 2017

A330569 a(n) = 1 if n is odd, otherwise a(n) = 2^(v-1)+1 where v is the 2-adic valuation of n (A007814(n)).

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 9, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 17, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 9, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 33, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 9, 1, 2, 1, 3, 1
Offset: 1

Author

N. J. A. Sloane, Jan 07 2020

Keywords

Comments

Conjecture: a(n) is the height of the bottom region in column n of the Conant gasket in A328078.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[OddQ[n], 1, 1 + 2^(IntegerExponent[n, 2] - 1)]; Array[a, 100] (* Amiram Eldar, Aug 30 2024 *)
  • PARI
    a(n) = if(n % 2, 1, 1 + 1 << (valuation(n, 2) - 1)); \\ Amiram Eldar, Aug 30 2024
  • Python
    def A330569(n): return 1+(0 if n&1 else 1<<(~n & n-1).bit_length()-1) # Chai Wah Wu, Jul 01 2022
    

Formula

a(n) = (A006519(n) + A040001(n))/2. - Ridouane Oudra, Jul 30 2025
Showing 1-5 of 5 results.