cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140701 Partial products of A005448.

Original entry on oeis.org

1, 1, 4, 40, 760, 23560, 1083760, 69360640, 5895654400, 642626329600, 87397180825600, 14507932017049600, 2887078471392870400, 678463440777324544000, 185898982772986925056000, 58744078556263868317696000, 21206612358811256462688256000
Offset: 0

Views

Author

Jonathan Vos Post, May 24 2008

Keywords

Examples

			a(10) = 87397180825600 = 1 * 4 * 10 * 19 * 31 * 46 * 64 * 85 * 109 * 136.
		

Crossrefs

Cf. A005448.
For analog with centered n-gonal numbers see A140702.
For analog with regular triangular numbers see A006472.
For the analog with a partial sum instead of a partial product see A006003.

Programs

  • Mathematica
    Table[Product[(3*k^2-3*k+2)/2,{k,1,n}],{n,1,20}] (* Vaclav Kotesovec, Jul 11 2015 *)
    FoldList[Times,3*Accumulate[Range[0,20]]+1] (* Harvey P. Dale, Aug 05 2018 *)
  • PARI
    a(n) = prod(k=1, n, 3*k*(k-1)/2 + 1); \\ Michel Marcus, Mar 02 2023

Formula

a(n) = Product_{k=1..n} A005448(k).
a(n) ~ cosh(Pi*sqrt(5/3)/2) * 3^n * n^(2*n) / (exp(2*n) * 2^(n-1)). - Vaclav Kotesovec, Jul 11 2015
a(n) = (2/3)^(1 - n) * Pochhammer(1 + (3 - i*sqrt(15))/6, n - 1) * Pochhammer(1 + (3 + i*sqrt(15))/6, n - 1), for n>=1. - Antonio GraciĆ” Llorente, Sep 10 2023