A140749 Triangle c(n,k) of the numerators of coefficients [x^k] P(n,x) of the polynomials P(n,x) of A129891.
1, -1, 1, 1, -1, 1, -1, 11, -3, 1, 1, -5, 7, -2, 1, -1, 137, -15, 17, -5, 1, 1, -7, 29, -7, 25, -3, 1, -1, 363, -469, 967, -35, 23, -7, 1, 1, -761, 29531, -89, 1069, -9, 91, -4, 1, -1, 7129, -1303, 4523, -285, 3013, -105, 29, -9, 1, 1, -671, 16103, -7645, 31063, -781, 4781, -55, 12, -5, 1
Offset: 0
Examples
The polynomials, for n =0,1,2, ..., are P(0, x) = 1; P(1, x) = -1/2 + x; P(2, x) = 1/3 - x + x^2; P(3, x) = -1/4 + 11/12*x - 3/2*x^2 + x^3; P(4, x) = 1/5 - 5/6*x + 7/4*x^2 - 2*x^3 + x^4; P(5, x) = -1/6 + 137/180*x - 15/8*x^2 + 17/6*x^3 - 5/2*x^4 + x^5; and the coefficients are 1; -1/2, 1; 1/3, -1, 1; -1/4, 11/12, -3/2, 1; 1/5, -5/6, 7/4, -2, 1; -1/6, 137/180, -15/8, 17/6, -5/2, 1; 1/7, -7/10, 29/15, -7/2, 25/6, -3, 1;.
References
- Paul Curtz, Gazette des Mathématiciens, 1992, 52, p. 44.
- Paul Curtz, Intégration Numérique .. Note 12 du Centre de Calcul Scientifique de l'Armement, Arcueil, 1969. Now in 35170, Bruz.
- P. Flajolet, X. Gourdon, and B. Salvy, Sur une famille de polynômes issus de l'analyse numérique, Gazette des Mathématiciens, 1993, 55, pp. 67-78.
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Jean-François Alcover, Plot showing roots of P(200,x) in shape of a cardioid
Programs
-
Magma
[Numerator(Factorial(k+1)*StirlingFirst(n+1,k+1)/Factorial(n+1) ): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 24 2023
-
Maple
P := proc(n,x) option remember ; if n =0 then 1; else (-1)^n/(n+1)+x*add( (-1)^i/(i+1)*procname(n-1-i,x),i=0..n-1) ; expand(%) ; fi; end: A140749 := proc(n,k) p := P(n,x) ; numer(coeftayl(p,x=0,k)) ; end: seq(seq(A140749(n, k),k=0..n),n=0..13) ; # R. J. Mathar, Aug 24 2009
-
Mathematica
p[0] = 1; p[n_] := p[n] = (-1)^n/(n+1) + x*Sum[(-1)^k*p[n-1-k] / (k+1), {k, 0, n-1}]; Numerator[ Flatten[ Table[ CoefficientList[p[n], x], {n, 0, 11}]]][[1 ;; 69]] (* Jean-François Alcover, Jun 17 2011 *) Table[Numerator[(k+1)!*StirlingS1[n+1,k+1]/(n+1)!], {n,0,12}, {k,0,n} ]//Flatten (* G. C. Greubel, Oct 24 2023 *)
-
SageMath
def A048594(n,k): return (-1)^(n-k)*numerator(factorial(k+1)* stirling_number1(n+1,k+1)/factorial(n+1)) flatten([[A048594(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 24 2023
Formula
(n+1)*c(n,k) = (n+1-k)*c(n-1,k) - n*c(n-1, k-1). [Edgard Bavencoffe in 1992]
Equals Numerators of A048594(n+1,k+1)/(n+1)!. - Paul Curtz, Jul 17 2008
Extensions
Edited and extended by R. J. Mathar, Aug 24 2009
Comments