A273756
Least p for which min { x >= 0 | p + (2n+1)*x + x^2 is composite } reaches the (local) maximum given in A273770.
Original entry on oeis.org
41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, 251, 281, 313, 347, 383, 421, 461, 503, 547, 593, 641, 691, 743, 797, 73303, 73361, 73421, 73483, 3443897, 3071069, 3071137, 15949847, 76553693, 365462323, 365462399, 2204597, 9721, 1842719, 246407633, 246407719, 246407807, 246407897, 246407989
Offset: 0
-
A273756(n,p=2*n+1,L=10^(5+n\10),m=0,Q)={forprime(q=1,L, for(x=1,oo, ispseudoprime(q+p*x+x^2)&& next; x>m&& [Q=q,m=x]; break));Q}
a(27) corrected and more terms from
Don Reble, Feb 15 2018
A140754
Array T(n,k) = 19*n^2 + 10*k^2, read by rows, with 14 columns and 14 rows.
Original entry on oeis.org
29, 59, 109, 179, 269, 379, 509, 659, 829, 1019, 1229, 1459, 1709, 1979, 86, 116, 166, 236, 326, 436, 566, 716, 886, 1076, 1286, 1516, 1766, 2036, 181, 211, 261, 331, 421, 531, 661, 811, 981, 1171, 1381, 1611, 1861, 2131, 314, 344, 394, 464, 554, 664, 794
Offset: 1
Aldrich Stevens (aldrichstevens(AT)msn.com), May 27 2008
The array in full:
29 59 109 179 269 379 509 659 829 1019 1229 1459 1709 1979
86 116 166 236 326 436 566 716 886 1076 1286 1516 1766 2036
181 211 261 331 421 531 661 811 981 1171 1381 1611 1861 2131
314 344 394 464 554 664 794 944 1114 1304 1514 1744 1994 2264
485 515 565 635 725 835 965 1115 1285 1475 1685 1915 2165 2435
694 724 774 844 934 1044 1174 1324 1494 1684 1894 2124 2374 2644
941 971 1021 1091 1181 1291 1421 1571 1741 1931 2141 2731 2621 2891
1226 1256 1306 1376 1466 1576 1706 1856 2026 2216 2426 2656 2906 3176
1549 1579 1629 1699 1789 1899 2029 2179 2349 2539 2749 2979 3229 3499
1910 1940 1990 2060 2150 2260 2390 2540 2710 2900 3110 3340 3590 3860
2309 2339 2389 2459 2549 2669 2789 2939 3109 3299 3509 3739 3989 4259
2746 2776 2826 2896 2986 3096 3226 3376 3546 3736 3946 4176 4426 4696
3221 3251 3301 3371 3461 3571 3701 3851 4021 4211 4421 4651 4901 5171
3734 3764 3814 3884 3974 4084 4214 4364 4534 4724 4934 5164 5414 5684
-
[19*n^2+10*k^2: k in [1..14], n in [1..14]]; // G. C. Greubel, Oct 22 2023
-
Table[19*n^2 +10*k^2, {n,14}, {k,14}]//Flatten (* G. C. Greubel, Oct 22 2023 *)
-
flatten([[19*n^2+10*k^2 for k in range(1,15)] for n in range(1,15)]) # G. C. Greubel, Oct 22 2023
Edited with better definition by
Omar E. Pol, Jan 05 2009
A140340
Square array read by rows: T(n,k) = 19*n^2+10*k^2-(n-1)*(20*(k-1)+10), with 14 columns.
Original entry on oeis.org
29, 59, 109, 179, 269, 379, 509, 659, 829, 1019, 1229, 1459, 1709, 1979, 76, 86, 116, 166, 236, 326, 436, 566, 716, 886, 1076, 1286, 1516, 1766, 161, 151, 161, 191, 241, 311, 401, 511, 641, 791, 961, 1151, 1361, 1591, 284, 254, 244, 254, 284, 334, 404, 494, 604, 734, 884, 1054, 1244, 1454
Offset: 1
Aldrich Stevens (aldrichstevens(AT)msn.com), May 29 2008
Array begins:
29, 59, 109, 179, 269, 379, 509, 659, 829, 1019, 1229, 1459, 1709, 1979;
76, 86, 116, 166, 236, 326, 436, 566, 716, 886, 1076, 1286, 1516, 1766;
161, 151, 161, 191, 241, 311, 401, 511, 641, 791, 961, 1151, 1361, 1591;
284, 254, 244, 254, 284, 334, 404, 494, 604, 734, 884, 1054, 1244, 1454;
445, 395, 365, 355, 365, 395, 445, 515, 605, 715, 845, 995, 1165, 1355;
...
A140350
This sequence splices 36x^2 - 810x + 2753 and the first of its transforms 9x^2 - 423x + 3167 into a prime chain 91 terms long.
Original entry on oeis.org
3167, 2753, 2753, 1979, 2357, 1277, 1979, 647, 1619, 89, 1277, 397
Offset: 1
Aldrich Stevens (aldrichstevens(AT)msn.com), May 29 2008
-
procedure Ndegrees; var a : array[0..16] of extended; aa, ct,bb,cc: longint; n,nh,i,j : integer; ab1,ab2 : extended; begin for i := 0 to 16 do a[i] := 0; N := 7; a[0] := 3167{ FIRST TERM OF PRIME CHAIN}; nh := 1; a[1] := 2753 ;a[2] := 2753 ;a[3] := 1979 ;a[4] := 2357 ;a[5] := 1277 ;a[6] := 1979 ; a[7] := 647 ;a[8] := 1619 ; repeat for i := N downto nh do BEGIN a[i] := a[i] - a[i-1] ; IF NH = 5 THEN A[I] := ABS(A[I]); {******} END; nh := nh + 1; until nh = n + 2; ct := 0; repeat ct := ct + 1; ab1 := a[n] + a[n-1]; for i := N-1 downto 1 do begin IF I = 5 THEN IF ODD(ct) THEN A[i] := -A[i];{******} ab2 := a[i] + a[i-1] ; a[i] := ab1; ab1 := ab2; end; WRITELN(AB1); READLN; until 1<0; END;
Showing 1-4 of 4 results.
Comments