A140766 a(n) = 6*a(n-1) - 6*a(n-2).
1, 5, 24, 114, 540, 2556, 12096, 57240, 270864, 1281744, 6065280, 28701216, 135815616, 642686400, 3041224704, 14391229824, 68100030720, 322252805376, 1524916647936, 7215983055360, 34146398444544, 161582492335104, 764616563343360, 3618204426049536
Offset: 1
Examples
a(5) = 540 = 6*a(4) - 6*a(3) = 6*(114) - 6*24. a(5) = 540 = term (1,1) of X^5.
Links
- Index entries for linear recurrences with constant coefficients, signature (6,-6).
Programs
-
Mathematica
LinearRecurrence[{6,-6},{1,5},30] (* Harvey P. Dale, Oct 01 2014 *)
Formula
a(n) = 6*a(n-1) - 6*a(n-2); a(1) = 1, a(2) = 5.
Term (1,1) of M^n, where M = the 3x3 matrix [1,1,1; 1,2,1; 3,1,3].
From R. J. Mathar, May 31 2008: (Start)
O.g.f.: x*(1 - x)/(1 - 6*x + 6*x^2).
a(n) = Sum_{1<=k<=n} A030523(n,k)*2^(k-1). - Philippe Deléham, Feb 19 2013
a(n) = (sqrt(3)/36)*((3 + sqrt(3))^(n+1) - (3 - sqrt(3))^(n+1)). - Taras Goy, Jan 03 2025
E.g.f.: (exp(3*x)*(cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)) - 1)/6. - Stefano Spezia, Jan 04 2025
Extensions
More terms from R. J. Mathar, May 31 2008
More terms from Harvey P. Dale, Oct 01 2014
Comments