cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140864 Smallest odd number with same number of divisors as 3*a(n-1).

Original entry on oeis.org

1, 3, 9, 15, 45, 105, 315, 945, 2835, 3465, 10395, 31185, 45045, 135135, 405405, 675675, 2027025, 3828825, 11486475, 34459425, 72747675, 218243025, 654729075, 1527701175, 4583103525, 11712375675, 35137127025, 105411381075
Offset: 1

Views

Author

J. Lowell, Jul 20 2008

Keywords

Examples

			9*3=27 has 4 divisors, but smallest odd number with 4 divisors is 15.
		

Crossrefs

Cf. A053624, A019505. d(a(n)) = A036451(n) for first 18 terms.

Programs

  • PARI
    a(nn) = {ia = 1; print1(ia, ", "); for (n = 1, nn - 1, nd = numdiv(3*ia); forstep(i = 1, 3*ia, 2, if (numdiv(i) == nd, ia = i; break;);); print1(ia, ", "););} \\ Michel Marcus, Jun 14 2013
    
  • PARI
    {/*prints b-file for A140864 - add more for loops for more terms*/ print("#A140864"); print(1" "1); print(2" "3); n = 3; for(p=3,56,tau = numdiv(3*n); exp3n=factor(n)[1,2];delta = bigomega(exp3n+2) - bigomega(exp3n+1); delta = max(delta+1,2); var = exp3n+delta; num = 10^1000; for( n1=1, var, for (n2=0, n1, for( n3=0, n2, for( n4=0, n3, for( n5=0, n4, for( n6=0, n5, for( n7=0, n6, for( n8=0, n7, for( n9=0, n8, for( n10=0, n9, for( n11=0, n10, for( n12=0, n11, for( n13=0, n12, for( n14=0, n13, for( n15=0, n14, if( (n1+1) * (n2+1) * (n3+1) * (n4+1) * (n5+1) * (n6+1) * (n7+1) * (n8+1) * (n9+1) * (n10+1) * (n11+1) * (n12+1) * (n13+1) * (n14+1) * (n15+1) == tau, numtemp = prime(2)^n1 * prime(3)^n2 * prime(4)^n3 * prime(5)^n4 * prime(6)^n5 * prime(7)^n6  * prime(8)^n7 * prime(9)^n8 * prime(10)^n9 * prime(11)^n10 * prime(12)^n11 * prime(13)^n12 * prime(14)^n13 * prime(15)^n14 * prime(16)^n15; if(numtemp < num, num = numtemp); ));););););););) ;);););) ;););); print(p" "num); n=num;)} \\ Dimitri Papadopoulos, May 08 2019

Extensions

a(10) through a(28) from Klaus Brockhaus, Jul 23 2008
a(29) through a(56) from Dimitri Papadopoulos, May 08 2019