cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141015 a(0) = 0, a(1) = 1, a(2) = 2; for n > 2, a(n) = a(n-1) + 2*a(n-2) + a(n-3).

Original entry on oeis.org

0, 1, 2, 4, 9, 19, 41, 88, 189, 406, 872, 1873, 4023, 8641, 18560, 39865, 85626, 183916, 395033, 848491, 1822473, 3914488, 8407925, 18059374, 38789712, 83316385, 178955183, 384377665, 825604416, 1773314929, 3808901426
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Jul 11 2008

Keywords

Comments

Central axis of triangle G(n, k): G(n,0) = G(n+1, n+1) = 1, G(n+2, n+1) = 2, G(n+3, n+1) = 4, G(n+4, k) = G(n+1, k-1) + G(n+1, k) + G(n+2, k) + G(n+3, k) for k = 1..(n+1). (This is triangular array A140997.)
Central axis of triangle G(n, k): G(n, n) = G(n+1, 0) = 1, G(n+2, 1) = 2, G(n+3, 2) = 4, G(n+4, k) = G(n+1, k-2) + G(n+1, k-3) + G(n+2, k-2) + G(n+3, k-1) for k = 3..(n+3). (This is triangular array A140994, which is a mirror image of A140997.)
a(n-1) is the top left entry of the n-th power of any of the 3X3 matrices [0, 1, 1; 1, 1, 1; 0, 1, 0], [0, 1, 0; 1, 1, 1; 1, 1, 0], [0, 1, 1; 0, 0, 1; 1, 1, 1] or [0, 0, 1; 1, 0, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (1 + x)/(1 - x - 2 x^2 - x^3), {x,0,50}], x] (* G. C. Greubel, Jun 09 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(x*(1+x)/(1-x-2*x^2-x^3))) \\ G. C. Greubel, Jun 09 2017
  • Sage
    from sage.combinat.sloane_functions import recur_gen3; it = recur_gen3(0,1,2,1,2,1); [next(it) for i in range(31)] # Zerinvary Lajos, May 17 2009
    

Formula

From R. J. Mathar, Aug 22 2008: (Start)
O.g.f.: x*(1 + x)/(1 - x - 2*x^2 - x^3).
a(n) = (-1)^(n+1)*A078039(n-1). (End)

Extensions

Typo in definition corrected by Paolo P. Lava, Jul 31 2008
Dysfunctional Maple program removed by R. J. Mathar, Oct 28 2009
Comments clarified by Petros Hadjicostas, Jun 12 2019