A141053 Most-significant decimal digit of Fibonacci(5n+3).
2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2
Offset: 0
Examples
From _Johannes W. Meijer_, Jul 06 2011: (Start) d p(N=2000) p(N=4000) p(N=6000) p(Benford) 1 0.29900 0.29950 0.30033 0.30103 2 0.17700 0.17675 0.17650 0.17609 3 0.12550 0.12525 0.12517 0.12494 4 0.09650 0.09675 0.09700 0.09691 5 0.07950 0.07950 0.07933 0.07918 6 0.06700 0.06675 0.06700 0.06695 7 0.05800 0.05825 0.05800 0.05799 8 0.05150 0.05125 0.05100 0.05115 9 0.04600 0.04600 0.04567 0.04576 Total 1.00000 1.00000 1.00000 1.00000 (End)
Links
- Kevin Brown, Benford's Law.
- Eric Weisstein's World of Mathematics, Benford's Law.
- Wikipedia, Benford's Law.
- Index entries for sequences related to Benford's law
Crossrefs
Cf. A000045 (F(n)), A008963 (Initial digit F(n)), A105511-A105519, A003893 (F(n) mod 10), A130893, A186190 (First digit tribonacci), A008952 (Leading digit 2^n), A008905 (Leading digit n!), A045510, A112420 (Leading digit Collatz 3*n+1 starting with 1117065), A007524 (log_10(2)), A104140 (1-log_10(9)). - Johannes W. Meijer, Jul 06 2011
Programs
-
Maple
A134490 := proc(n) combinat[fibonacci](5*n+3) ; end proc: A141053 := proc(n) convert(A134490(n),base,10) ; op(-1,%) ; end proc: seq(A141053(n),n=0..70) ; # R. J. Mathar, Jul 04 2011
-
Mathematica
Table[IntegerDigits[Fibonacci[5n+3]][[1]],{n,0,70}] (* Harvey P. Dale, Jun 22 2025 *)
Formula
a(n) = floor(F(5*n+3)/10^(floor(log(F(5*n+3))/log(10)))). - Johannes W. Meijer, Jul 06 2011
Extensions
Edited by Johannes W. Meijer, Jul 06 2011
Comments