A141054 8-idempotent numbers: a(n) = binomial(n+8,8)*8^n.
1, 72, 2880, 84480, 2027520, 42172416, 787218432, 13495173120, 215922769920, 3262832967680, 46984794734592, 649244436332544, 8656592484433920, 111869810568069120, 1406363332855726080, 17251390216363573248, 207016682596362878976, 2435490383486622105600
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
Programs
-
Magma
[8^n* Binomial(n+8, 8): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
-
Maple
seq(binomial(n+8,8)*8^n, n=0..17);
-
Mathematica
Table[Binomial[n + 8, 8] 8^n, {n, 0, 15}] (* Michael De Vlieger, Jul 24 2017 *)
-
PARI
vector(15,n,binomial(n+7,8)*8^(n-1)) \\ Derek Orr, Jul 24 2017
Formula
a(n) = binomial(n+8,8)*8^n.
G.f.: 1/(1-8*x)^9. - Vincenzo Librandi, Oct 16 2011
From Amiram Eldar, Apr 17 2022: (Start)
Sum_{n>=0} 1/a(n) = 738990736/105 - 52706752*log(8/7).
Sum_{n>=0} (-1)^n/a(n) = 306110016*log(9/8) - 1261909808/35. (End)
Comments