cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141057 Number of Abelian cubes of length 3n over an alphabet of size 3. An Abelian cube is a string of the form x x' x'' with |x| = |x'| = |x''| and x is a permutation of x' and x''.

Original entry on oeis.org

1, 3, 27, 381, 6219, 111753, 2151549, 43497891, 912018123, 19671397617, 434005899777, 9754118112951, 222621127928109, 5147503311510927, 120355825553777043, 2841378806367492381, 67648182142185172683, 1622612550613755130497, 39178199253650491044441
Offset: 0

Views

Author

Jeffrey Shallit, Aug 01 2008

Keywords

Comments

Conjecture: the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for primes p >= 5 and positive integers n and k. Extending the sequence to negative n via a(-n) = Sum_{k = 0..n} C(-n,k)^3 * Sum_{j = 0..k} C(k,j)^3 produces the sequence [-1, 255, -53893, 14396623, -4388536251, 1461954981315, -518606406878589, ...] that appears to satisfy the same supercongruences. - Peter Bala, Apr 27 2022

Examples

			a(1) = 3 as the Abelian cubes are aaa, bbb, ccc.
G.f.: A(x) = 1 + 3*x + 27*x^2/2!^3 + 381*x^3/3!^3 + 6219*x^4/4!^3 +...
A(x) = [1 + x + x^2/2!^3 + x^3/3!^3 + x^4/4!^3 +...]^3. - _Paul D. Hanna_
		

Crossrefs

Cf. A000172 (Franel numbers), A002893.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 3, 27][n+1],
         ((567*n^6-3213*n^5+7083*n^4-7920*n^3+4968*n^2-1680*n+240)*a(n-1)
          -3*(3*n-4)*(63*n^5-399*n^4+1039*n^3-1380*n^2+920*n-240)*a(n-2)
          +729*(21*n^2-35*n+15)*(n-2)^4*a(n-3))/(n^4*(21*n^2-77*n+71)))
        end:
    seq(a(n), n=0..20); # Alois P. Heinz, May 25 2013
    A141057_list := proc(len) series(hypergeom([], [1, 1], x)^3, x, len);
    seq((n!)^3*coeff(%, x, n), n=0..len-1) end:
    A141057_list(19); # Peter Luschny, May 31 2017
  • Mathematica
    a[n_] := Sum[Binomial[n, k]^3 HypergeometricPFQ[{-k, -k, -k}, {1, 1}, -1], {k, 0, n}]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Jun 27 2019 *)
  • PARI
    {a(n)=if(n<0,0,n!^3*polcoeff(sum(m=0,n,x^m/m!^3+x*O(x^n))^3,n))}
    
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)^3*sum(j=0,k,binomial(k,j)^3))}
    
  • PARI
    N=33; x='x+O('x^N)
    Vec(serlaplace(serlaplace(serlaplace(sum(n=0,N,x^n/(n!^3)))^3))) /* show terms */

Formula

a(n) = sum of (n!/(n1)! (n2)! (n3!))^3 over all nonnegative n1, n2, n3 such that n1+n2+n3 = n.
G.f.: Sum_{n>=0} a(n)*x^n/n!^3 = [ Sum_{n>=0} x^n/n!^3 ]^3. - Paul D. Hanna, Jan 19 2011
a(n) = Sum_{k=0..n} C(n,k)^3 * Sum_{j=0..k} C(k,j)^3 = Sum_{k=0..n} C(n,k)^3*A000172(k). - Paul D. Hanna, Jan 20 2011
a(n) ~ 3^(3*n+2) / (4 * Pi^2 * n^2). - Vaclav Kotesovec, Sep 04 2014
a(n) = (n!)^3 * [x^n] hypergeom([], [1, 1], x)^3. - Peter Luschny, May 31 2017

Extensions

Extended by Paul D. Hanna, Jan 19 2011
Offset corrected by Alois P. Heinz, May 25 2013