A141113 Positive integers k such that d(d(k)) divides k, where d(k) is the number of divisors of k.
1, 2, 4, 6, 12, 15, 16, 20, 21, 24, 27, 28, 32, 33, 36, 39, 40, 44, 48, 51, 52, 56, 57, 60, 64, 68, 69, 72, 76, 80, 84, 87, 88, 90, 92, 93, 96, 104, 108, 111, 112, 116, 120, 123, 124, 126, 128, 129, 132, 136, 141, 144, 148, 150, 152, 156, 159, 164, 172, 176, 177, 180
Offset: 1
Keywords
Examples
28 has 6 divisors and 6 has 4 divisors. 4 divides 28, so 28 is in the sequence.
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): a:=proc(n) if `mod`(n, tau(tau(n))) = 0 then n else end if end proc: seq(a(n),n=1..200); # Emeric Deutsch, Jun 05 2008
-
Mathematica
Select[Range[200],Divisible[#,DivisorSigma[0,DivisorSigma[0,#]]]&] (* Harvey P. Dale, Feb 05 2012 *)
-
PARI
is(k) = k%numdiv(numdiv(k)) == 0; \\ Jinyuan Wang, Feb 19 2019
Extensions
More terms from Emeric Deutsch, Jun 05 2008