A141114 Positive integers k where d(d(k)) is coprime to k, where d(k) is the number of divisors of k.
1, 3, 5, 7, 8, 9, 10, 11, 13, 14, 17, 19, 22, 23, 25, 26, 29, 31, 34, 35, 37, 38, 41, 43, 45, 46, 47, 49, 53, 55, 58, 59, 61, 62, 63, 65, 67, 71, 73, 74, 75, 77, 79, 81, 82, 83, 85, 86, 89, 91, 94, 95, 97, 99, 100, 101, 103, 105, 106, 107, 109, 113, 115, 117, 118, 119, 121
Offset: 1
Keywords
Examples
26 has 4 divisors and 4 has 3 divisors. 3 is coprime to 26, so 26 is in the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[k:k in [1..130]|Gcd(k,#Divisors(#Divisors(k))) eq 1]; // Marius A. Burtea, Dec 16 2019
-
Maple
filter:= proc(n) uses numtheory; igcd(tau(tau(n)), n) = 1 end proc: select(filter, [$1..200]); # Robert Israel, Dec 16 2019
-
Mathematica
Select[Range[200], GCD[DivisorSigma[0, DivisorSigma[0, # ]], # ] == 1 &] (* Stefan Steinerberger, Jun 05 2008 *)
-
PARI
is(n) = gcd(numdiv(numdiv(n)), n)==1 \\ Felix Fröhlich, Dec 16 2019
Extensions
More terms from Stefan Steinerberger, Jun 05 2008
Comments