A141137 Even Fibonacci pseudoprimes: even composite numbers k such that either (1) k divides Fibonacci(k-1) if k mod 5 = 1 or -1 or (2) k divides Fibonacci(k+1) if k mod 5 = 2 or -2.
8539786, 12813274, 17340938, 33940178, 64132426, 89733106, 95173786, 187473826, 203211098, 234735586, 353686906, 799171066, 919831058, 1188287794, 1955272906, 2166139898, 2309861746, 2864860298, 3871638242, 5313594466, 5867301826
Offset: 1
Links
- Dana Jacobsen, Table of n, a(n) for n = 1..68
- Dorin Andrica and Ovidiu Bagdasar, Recurrent Sequences: Key Results, Applications, and Problems, Springer (2020), p. 88.
- Dorin Andrica and Ovidiu Bagdasar, On Generalized Lucas Pseudoprimality of Level k, Mathematics (2021) Vol. 9, 838.
Crossrefs
Cf. A081264.
Programs
-
Perl
use ntheory ":all"; for (3..1e10) { my $n = $<<1; $e = (0,-1,1,1,-1)[$n%5]; next unless $e; say $n unless (lucas_sequence($n, 1, -1, $n+$e))[0]; } # _Dana Jacobsen, May 25 2015
Extensions
a(19) from Giovanni Resta, Jul 20 2013
a(20)-a(21) from Dana Jacobsen, May 25 2015
Comments