A141159 Duplicate of A139492.
7, 37, 43, 67, 79, 109, 127, 151, 163, 193, 211, 277, 331, 337, 373, 379, 421, 457, 463, 487, 499, 541, 547, 571, 613, 631, 673, 709, 739, 751, 757, 823, 877, 883, 907, 919, 967, 991, 1009, 1033, 1051, 1087, 1093, 1117, 1129, 1171, 1201, 1213, 1297, 1303
Offset: 1
Keywords
Examples
a(1)=7 because we can write 7 = 2^2 + 3*2*1 - 3*1^2 (or 7 = 1^2 + 5*1*1 + 1^2).
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Peter Luschny, Binary Quadratic Forms
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Programs
-
Maple
f:=n->7*ceil((6*n+1)/7)-(6*n+1):for n from 1 to 220 do if isprime(6*n+1) and f(n)<>1 and f(n)<>2 and f(n)<>4 then print(6*n+1) fi od. # Gary Detlefs, Jan 26 2014
-
Mathematica
xy[{x_,y_}]:={x^2+3x y-3y^2,y^2+3x y -3x^2}; Union[Select[Flatten[xy/@ Subsets[ Range[50],{2}]],#>0&&PrimeQ[#]&]] (* Harvey P. Dale, Feb 17 2013 *)
-
Sage
# uses[binaryQF] # The function binaryQF is defined in the link 'Binary Quadratic Forms'. Q = binaryQF([1, 3, -3]) Q.represented_positives(1326, 'prime') # Peter Luschny, Jun 24 2019
Extensions
More terms from Harvey P. Dale, Feb 17 2013
Comments