cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141164 Numbers having exactly 1 divisor of the form 8*k + 7.

Original entry on oeis.org

7, 14, 15, 21, 23, 28, 30, 31, 35, 39, 42, 45, 46, 47, 49, 55, 56, 60, 62, 69, 70, 71, 75, 77, 78, 79, 84, 87, 90, 91, 92, 93, 94, 95, 98, 103, 110, 111, 112, 115, 117, 120, 124, 127, 133, 138, 140, 141, 142, 143, 147, 150, 151, 154, 155, 156, 158, 159, 167, 168, 174, 180, 182, 183, 184, 186, 188, 190, 191, 196, 199
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 26 2011

Keywords

Examples

			a(1) = A188226(1) = 7.
		

Crossrefs

Numbers having m divisors of the form 8*k + i: A343107 (m=1, i=1), A343108 (m=0, i=3), A343109 (m=0, i=5), A343110 (m=0, i=7), A343111 (m=2, i=1), A343112 (m=1, i=3), A343113 (m=1, i=5), this sequence (m=1, i=7).
Indices of 1 in A188172.
A007522 is a subsequence.
Cf. A004771.

Programs

  • Haskell
    import Data.List (elemIndices)
    a141164 n = a141164_list !! (n-1)
    a141164_list = map succ $ elemIndices 1 $ map a188172 [1..]
    
  • Mathematica
    okQ[n_] := Length[Select[Divisors[n] - 7, Mod[#, 8] == 0 &]] == 1; Select[Range[200], okQ]
  • PARI
    res(n, a, b) = sumdiv(n, d, (d%a) == b)
    isA141164(n) = (res(n, 8, 7) == 1) \\ Jianing Song, Apr 06 2021

Formula

A188172(a(n)) = 1.