A141258 Inverse Mobius transform of the Carmichael lambda function.
1, 2, 3, 4, 5, 6, 7, 6, 9, 10, 11, 10, 13, 14, 11, 10, 17, 18, 19, 16, 15, 22, 23, 14, 25, 26, 27, 22, 29, 22, 31, 18, 23, 34, 23, 28, 37, 38, 27, 22, 41, 30, 43, 34, 29, 46, 47, 22, 49, 50, 35, 40, 53, 54, 35, 30, 39, 58, 59, 34, 61, 62, 27, 34, 29, 46, 67, 52, 47, 46, 71, 38
Offset: 1
Keywords
Examples
a(6) = 6 = (1, 1, 1, 0, 0, 1) dot (1, 1, 2, 2, 4, 2) = (1 + 1 + 2 + 0 + 0 + 2); where (1, 1, 1, 0, 0, 1) = row 6 of triangle A051731.
Links
- Enrique Pérez Herrero, Table of n, a(n) for n = 1..5000
- W. D. Banks and F. Luca, On integers with a special divisibility property, Archivum Mathematicum (BRNO) 42 (2006) pp 31-42.
Programs
-
Haskell
a141258 = sum . map a002322 . a027750_row -- Reinhard Zumkeller, Sep 02 2014
-
Mathematica
A141258[n_] := DivisorSum[n, CarmichaelLambda[#]&]; Table[A141258[n],{n,1,20}] (* Enrique Pérez Herrero, Apr 22 2014 *)
-
PARI
a(n) = sumdiv(n, d, lcm(znstar(d)[2])); \\ see PARI script in A002322; Michel Marcus, Apr 22 2014
Formula
a(n) = Sum_{d|n} A002322(d).
Extensions
More terms from R. J. Mathar, Jan 19 2009
Comments