A141268 Number of phylogenetic rooted trees with n unlabeled objects.
1, 2, 4, 11, 30, 96, 308, 1052, 3648, 13003, 47006, 172605, 640662, 2402388, 9082538, 34590673, 132566826, 510904724, 1978728356, 7697565819, 30063818314, 117840547815, 463405921002, 1827768388175, 7228779397588, 28661434308095, 113903170011006, 453632267633931
Offset: 1
Keywords
Examples
For n=4 we have A141268(4)=11 because Set(Set(Z),Set(Z),Set(Z,Z)), Set(Set(Z),Set(Set(Z),Set(Z,Z))), Set(Z,Z,Z,Z), Set(Set(Z,Z),Set(Z,Z)), Set(Set(Set(Z),Set(Z)),Set(Z,Z)), Set(Set(Z),Set(Z),Set(Set(Z),Set(Z))), Set(Set(Z),Set(Z),Set(Z),Set(Z)), Set(Set(Z),Set(Set(Z),Set(Z),Set(Z))), Set(Set(Set(Z),Set(Z)),Set(Set(Z),Set(Z))), Set(Set(Z),Set(Z,Z,Z)), Set(Set(Z),Set(Set(Z),Set(Set(Z),Set(Z))))
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Moshe Klein and A. Yu. Khrennikov, Recursion over partitions, P-Adic Numbers, Ultrametric Analysis, and Applications 6.4 (2014): 303-309. See sp_n.
Programs
-
Maple
with(combstruct): A141268 := [H, {H=Union(Set(Z,card>=1),Set(H,card>=2))}, unlabelled]; seq(count(A141268, size=j), j=1..20); # second Maple program: b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*binomial(a(i)+j-1, j), j=0..n/i))) end: a:= n-> `if`(n<2, n, 1+b(n, n-1)): seq(a(n), n=1..30); # Alois P. Heinz, Jun 18 2018
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; t[n_]:=t[n]=If[PrimeQ[n],{n},Join@@Table[Union[Sort/@Tuples[t/@fac]],{fac,Select[facs[n],Length[#]>1&]}]]; Table[Sum[Length[t[Times@@Prime/@ptn]],{ptn,IntegerPartitions[n]}],{n,7}] (* Gus Wiseman, Jul 31 2018 *) b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[b[n-i*j, i-1]*Binomial[a[i]+j-1, j], {j, 0, n/i}]]]; a[n_] := If[n < 2, n, 1 + b[n, n-1]]; Array[a, 30] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} seq(n)={my(v=vector(n)); for(n=1, n, v[n]=1 + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 26 2018
Formula
a(n) ~ c * d^n / n^(3/2), where d = 4.210216501727104448901818751..., c = 0.21649387167268793159311306... . - Vaclav Kotesovec, Sep 04 2014
Extensions
Offset corrected and more terms from Alois P. Heinz, Apr 21 2012
Comments