cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A141353 a(n) = Catalan(n) + 2^n - 0^n.

Original entry on oeis.org

1, 3, 6, 13, 30, 74, 196, 557, 1686, 5374, 17820, 60834, 212108, 751092, 2690824, 9727613, 35423206, 129775862, 477900844, 1767787478, 6565168996, 24468364172, 91486757944, 343068002258, 1289920924540, 4861979955884
Offset: 0

Views

Author

Paul Barry, Jun 27 2008

Keywords

Comments

Hankel transform is A141354.

Crossrefs

Cf. A000108 (Catalan numbers), A141351.

Programs

  • Mathematica
    f[n_] := Binomial[2n, n]/(n + 1) + 2^n - 0^n; f[0] = 1; Array[f, 29, 0] (* or *)
    CoefficientList[ Series[1 + 1/2 (-4 + 2/(1 - 2x) + (1 - Sqrt[1 - 4x])/x), {x, 0, 28}], x] (* Robert G. Wilson v, Mar 18 2018 *)
  • PARI
    a(n) = binomial(2*n,n)/(n+1) + 2^n - 0^n; \\ Michel Marcus, Mar 18 2018

Formula

G.f.: c(x)+2x/(1-2x), where c(x) is the g.f. of A000108. [corrected by Paul Barry, Oct 18 2010]
Conjecture: (n+1)*a(n) + 2*(-4*n+1)*a(n-1) + 4*(5*n-7)*a(n-2) + 8*(-2*n+5)*a(n-3) = 0. - R. J. Mathar, Nov 15 2012

A181106 Largest odd number strictly less than a square.

Original entry on oeis.org

-1, 3, 7, 15, 23, 35, 47, 63, 79, 99, 119, 143, 167, 195, 223, 255, 287, 323, 359, 399, 439, 483, 527, 575, 623, 675, 727, 783, 839, 899, 959, 1023, 1087, 1155, 1223, 1295, 1367, 1443, 1519, 1599, 1679, 1763, 1847, 1935, 2023, 2115, 2207, 2303, 2399, 2499
Offset: 1

Views

Author

Jerzy Kocik (jkocik(AT)siu.edu), Oct 03 2010

Keywords

Comments

The terms are the negatives of A141354 and therefore have the same generating function except the sign.

Crossrefs

Equals minus A141354.
Cf. A120413 (Largest even number strictly less than a square).

Programs

  • Mathematica
    Table[n^2-2^Mod[n,2],{n,50}] (* Ray Chandler, Dec 05 2011*)
    LinearRecurrence[{2,0,-2,1},{-1,3,7,15},50] (* Harvey P. Dale, Nov 16 2019 *)
  • PARI
    Vec(x*(x^3-x^2-5*x+1)/((x-1)^3*(x+1)) + O(x^100)) \\ Colin Barker, Jun 27 2015

Formula

a(n) = n^2 - 2^(n mod 2) = -A141354(n-1).
From Colin Barker, Jun 27 2015: (Start)
a(n) = n^2 - 1 for n even; a(n) = n^2 - 2 for n odd.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: x*(x^3-x^2-5*x+1) / ((x-1)^3*(x+1)).
(End)

Extensions

Edited by Ray Chandler, Dec 05 2011
Showing 1-2 of 2 results.