A141373 Primes of the form 3*x^2+16*y^2. Also primes of the form 4*x^2+4*x*y-5*y^2 (as well as primes the form 4*x^2+12*x*y+3*y^2).
3, 19, 43, 67, 139, 163, 211, 283, 307, 331, 379, 499, 523, 547, 571, 619, 643, 691, 739, 787, 811, 859, 883, 907, 1051, 1123, 1171, 1291, 1459, 1483, 1531, 1579, 1627, 1699, 1723, 1747, 1867, 1987, 2011, 2083, 2131, 2179, 2203, 2251, 2347, 2371, 2467, 2539
Offset: 1
Keywords
Examples
19 is a member because we can write 19=4*2^2+4*2*1-5*1^2 (or 19=4*1^2+12*1*1+3*1^2).
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- William C. Jagy and Irving Kaplansky, Positive definite binary quadratic forms that represent the same primes [Cached copy] See Table II.
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Crossrefs
Programs
-
Magma
[3] cat [ p: p in PrimesUpTo(3000) | p mod 24 in {19 } ]; // Vincenzo Librandi, Jul 24 2012
-
Mathematica
QuadPrimes2[3, 0, 16, 10000] (* see A106856 *)
-
PARI
list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\3), w=3*x^2; for(y=0, sqrtint((lim-w)\16), if(isprime(t=w+16*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017
Formula
Except for 3, the primes are congruent to 19 (mod 24). - T. D. Noe, May 02 2008
Extensions
More terms from Colin Barker, Apr 05 2015
Edited by N. J. A. Sloane, Jul 14 2019, combining two identical entries both with multiple cross-references.
Comments