A141375 Primes of the form x^2 + 8*x*y - 8*y^2 (as well as of the form x^2 + 10*x*y + y^2).
73, 97, 193, 241, 313, 337, 409, 433, 457, 577, 601, 673, 769, 937, 1009, 1033, 1129, 1153, 1201, 1249, 1297, 1321, 1489, 1609, 1657, 1753, 1777, 1801, 1873, 1993, 2017, 2089, 2113, 2137, 2161, 2281, 2377, 2473, 2521, 2593, 2617, 2689, 2713, 2833, 2857
Offset: 1
Keywords
Examples
a(1) = 73 because we can write 73 = 5^2 + 8*5*2 - 8*2^2 (or 73 = 2^2 + 10*2*3 + 3^2).
References
- Z. I. Borevich and I. R. Shafarevich. Number Theory. Academic Press. 1966.
Links
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Programs
-
Mathematica
Union[Select[Flatten[Table[x^2 + 8*x*y - 8*y^2, {x, 40}, {y, 40}]], # > 0 && PrimeQ[#] &]] (* T. D. Noe, Jun 12 2013 *)
Extensions
More terms and offset corrected by Arkadiusz Wesolowski, Jul 25 2012
Comments