cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141375 Primes of the form x^2 + 8*x*y - 8*y^2 (as well as of the form x^2 + 10*x*y + y^2).

Original entry on oeis.org

73, 97, 193, 241, 313, 337, 409, 433, 457, 577, 601, 673, 769, 937, 1009, 1033, 1129, 1153, 1201, 1249, 1297, 1321, 1489, 1609, 1657, 1753, 1777, 1801, 1873, 1993, 2017, 2089, 2113, 2137, 2161, 2281, 2377, 2473, 2521, 2593, 2617, 2689, 2713, 2833, 2857
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 28 2008

Keywords

Comments

Conjecture: Same as A107008. - Arkadiusz Wesolowski, Jul 25 2012
Discriminant = +96.
x^2 + 8*x*y - 8*y^2 = (x+4*y)^2 - 24*y^2, and x^2 + 10*x*y + y^2 = (x+5*y)^2 - 24*y^2, so this sequence is also primes of the form x^2 - 24*y^2. - Michael Somos, Jun 05 2013

Examples

			a(1) = 73 because we can write 73 = 5^2 + 8*5*2 - 8*2^2 (or 73 = 2^2 + 10*2*3 + 3^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich. Number Theory. Academic Press. 1966.

Crossrefs

Cf. A107008, A141373, A107003, A141376 (d = -96).

Programs

  • Mathematica
    Union[Select[Flatten[Table[x^2 + 8*x*y - 8*y^2, {x, 40}, {y, 40}]], # > 0 && PrimeQ[#] &]] (* T. D. Noe, Jun 12 2013 *)

Extensions

More terms and offset corrected by Arkadiusz Wesolowski, Jul 25 2012