cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A191449 Dispersion of (3,6,9,12,15,...), by antidiagonals.

Original entry on oeis.org

1, 3, 2, 9, 6, 4, 27, 18, 12, 5, 81, 54, 36, 15, 7, 243, 162, 108, 45, 21, 8, 729, 486, 324, 135, 63, 24, 10, 2187, 1458, 972, 405, 189, 72, 30, 11, 6561, 4374, 2916, 1215, 567, 216, 90, 33, 13, 19683, 13122, 8748, 3645, 1701, 648, 270, 99, 39, 14, 59049
Offset: 1

Views

Author

Clark Kimberling, Jun 05 2011

Keywords

Comments

Transpose of A141396.
Background discussion: Suppose that s is an increasing sequence of positive integers, that the complement t of s is infinite, and that t(1)=1. The dispersion of s is the array D whose n-th row is (t(n), s(t(n)), s(s(t(n))), s(s(s(t(n)))), ...). Every positive integer occurs exactly once in D, so that, as a sequence, D is a permutation of the positive integers. The sequence u given by u(n)=(number of the row of D that contains n) is a fractal sequence. Examples:
(1) s=A000040 (the primes), D=A114537, u=A114538.
(2) s=A022343 (without initial 0), D=A035513 (Wythoff array), u=A003603.
(3) s=A007067, D=A035506 (Stolarsky array), u=A133299.
More recent examples of dispersions: A191426-A191455.

Examples

			Northwest corner:
  1...3....9....27...81
  2...6....18...54...162
  4...12...36...108..324
  5...15...45...135..405
  7...21...63...189..567
		

Crossrefs

A054582: dispersion of (2,4,6,8,...).
A191450: dispersion of (2,5,8,11,...).
A191451: dispersion of (4,7,10,13,...).
A191452: dispersion of (4,8,12,16,...).

Programs

  • Mathematica
    (* Program generates the dispersion array T of increasing sequence f[n] *)
    r=40; r1=12; c=40; c1=12;
    f[n_] :=3n (* complement of column 1 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
    (* A191449 array *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191449 sequence *)
    (* Program by Peter J. C. Moses, Jun 01 2011 *)

Formula

T(i,j)=T(i,1)*T(1,j)=floor((3i-1)/2)*3^(j-1).

A141397 a(n) = 3*a(n-1) + A001651(n+1).

Original entry on oeis.org

1, 5, 19, 62, 193, 587, 1771, 5324, 15985, 47969, 143923, 431786, 1295377, 3886151, 11658475, 34975448, 104926369, 314779133, 944337427, 2833012310, 8499036961, 25497110915, 76491332779, 229473998372, 688421995153, 2065265985497, 6195797956531, 18587393869634
Offset: 0

Views

Author

Gary W. Adamson, Jun 29 2008

Keywords

Comments

Row sums of triangle A141396.

Examples

			a(2) = 19 = 3*a(1) + A001651(3) = 3*5 + 4 where A001651(3) = 4.
a(2) = 19 = sum of row 2 terms of triangle A141396: (4 + 6 + 9).
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-2,-4,3},{1,5,19,62},50] (* Harvey P. Dale, Jul 07 2024 *)
  • PARI
    Vec((-1-x-x^2) / ((1+x)*(3*x-1)*(x-1)^2) + O(x^40)) \\ Michel Marcus, Jan 21 2015

Formula

G.f.: ( -1-x-x^2 ) / ( (1+x)*(3*x-1)*(x-1)^2 ). a(n) = (-1)^n/16 -3*n/4 -3/2 +13*3^(n+1)/16. - R. J. Mathar, Feb 16 2011
Showing 1-2 of 2 results.