cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141411 Defined in comments.

Original entry on oeis.org

3, 1, 31, 28, 365, 514, 4388, 8220, 53871, 122284, 673222, 1748055, 8535397, 24383499, 109449848, 334783855, 1415768769, 4548229589, 18434398665, 61345927764, 241210652738, 823296868656, 3167642169823, 11010462627756, 41708741708554, 146886286090602
Offset: 0

Views

Author

Paul Curtz, Jun 18 2007

Keywords

Comments

Given any sequence {u(i), i >= 0} we define a family of polynomials by P(0,x) = u(0), P(n,x) = u(n) + x*Sum_{i=0..n-1} u(i)*P(n-i-1, x). Then we set a(n) = (P(n,-1)+P(n,1))/2.
For the present example we take {u(i)} to be 3,1,4,1,5,9,... (A000796).

References

  • P. Curtz, Gazette des Mathematiciens, 1992, 52, p.44.
  • P. Flajolet, X. Gourdon and B. Salvy, Gazette des Mathematiciens, 1993, 55, pp.67-78 .

Crossrefs

See A130620 for another version.

Programs

  • Maple
    u:= proc(n) Digits:= max(n+10);
           trunc (10* frac(evalf(Pi*10^(n-1))))
        end:
    P:= proc(n) option remember; local i, x;
          if n=0 then u(0)
        else unapply(expand(u(n)+x*add(u(i)*P(n-i-1)(x), i=0..n-1)), x)
          fi
        end:
    a:= n-> (P(n)(1)+P(n)(-1))/2:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 06 2009
  • Mathematica
    nmax = 25; digits = RealDigits[Pi, 10, nmax+1][[1]]; p[0][] = digits[[1]]; p[n][x_] := p[n][x] = digits[[n+1]] + x*Sum[digits[[i+1]] p[n-i-1][x], {i, 0, n-1}]; a[n_] := (p[n][1] + p[n][-1])/2; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Nov 22 2012 *)

Formula

a(n) ~ c * d^n, where d = 3.6412947999106071671946396356753..., c = 1.387705266307957334035092183546... . - Vaclav Kotesovec, Sep 10 2014

Extensions

Edited by N. J. A. Sloane, Aug 26 2009
Corrected and extended by Alois P. Heinz, Sep 06 2009