cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A130620 Defined in comments.

Original entry on oeis.org

3, 9, 31, 106, 365, 1263, 4388, 15336, 53871, 190059, 673222, 2393291, 8535397, 30526712, 109449848, 393272258, 1415768769, 5105086517, 18434398665, 66647658995, 241210652738, 873773659486, 3167642169823, 11491042716338, 41708741708554, 151461799255253
Offset: 0

Views

Author

Paul Curtz, Jun 18 2007

Keywords

Comments

Given any sequence {u(i), i >= 0} we define a family of polynomials by P(0,x) = u(0), P(n,x) = u(n) + x*Sum_{i=0..n-1} u(i)*P(n-i-1, x).
Then a(n) is the sum of the odd coefficients of P(n,x) if n is odd and a(n) is the sum of the even coefficients otherwise: a(n) = ((-1)^n*P(n,-1) + P(n,1))/2.
For the present example we take {u(i)} to be 3,1,4,1,5,9,... (A000796).

Examples

			We have P(0,x)=3, P(1,x)=1+9x, P(2,x)=4+6x+27x^2, ..., so that for example a(2) = (25+37)/2 = 31.
The polynomials P(n,x) are:
n=0: 3,
n=1: 1+ 9*x,
n=2: 4+ 6*x+ 27*x^2,
n=3: 1+25*x+ 27*x^2+ 81*x^3,
n=4: 5+14*x+117*x^2+108*x^3+243*x^4,
n=5: 9+48*x+100*x^2+486*x^3+405*x^4+729*x^5.
		

References

  • P. Curtz, Gazette des Mathematiciens, 1992, 52, p.44.
  • P. Flajolet, X. Gourdon and B. Salvy, Gazette des Mathematiciens, 1993, 55, pp.67-78 .

Crossrefs

See A141411 for another version.

Programs

  • Maple
    u:= proc(n) Digits:= max(n+10);
           trunc(10* frac(evalf(Pi*10^(n-1))))
        end:
    P:= proc(n) option remember; local i, x;
          if n=0 then u(0)
        else unapply(expand(u(n)+x*add(u(i)*P(n-i-1)(x), i=0..n-1)), x)
          fi
        end:
    a:= n-> (P(n)(1) +(-1)^n*P(n)(-1))/2:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 06 2009
  • Mathematica
    nmax = 25; digits = RealDigits[Pi, 10, nmax+1][[1]]; p[0][] = digits[[1]]; p[n][x_] := p[n][x] = digits[[n+1]] + x*Sum[digits[[i+1]] p[n-i-1][x], {i, 0, n-1}]; a[n_] := (p[n][1] + (-1)^n*p[n][-1])/2; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Nov 22 2012 *)

Formula

a(n) ~ c * d^n, where d = 3.6412947999106071671946396356753... (same as for A141411), c = 1.38770526630795733403509218... . - Vaclav Kotesovec, Sep 12 2014

Extensions

Edited by N. J. A. Sloane, Aug 26 2009
Definition corrected and more terms from Alois P. Heinz, Sep 06 2009

A100597 Based on the first matrix inverse of transformed Bernoulli numbers as defined in the Comments line.

Original entry on oeis.org

1, 1, 2, 5, 14, 49, 258, 1385, 1342, -13739, 1727362, 20549165, -892047378, -13084315271, 979519187138, 16158974238545, -1747908612654946, -32246548780758179, 4903305033480792642, 100032668564662494485, -20685044415403212103730, -462550882810484735564351
Offset: 1

Views

Author

Paul Curtz, Jun 06 2007

Keywords

Comments

A family of polynomials is defined by P(0,x) = u(0), P(n,x) = u(n) +x*Sum_{i=0..n-1} u(i)*P(n-i-1,x), where u(n) is the n-th Bernoulli number. The coefficients of P(n-1,x) are used to fill the n-th row of the infinite lower triangle matrix M. Then a(n) is given by M^(-1)[n,1] * n!.

Examples

			a(3) = 2, because M = [1; -1/2 1; 1/6 -1 1; ...], M^(-1) = [1; 1/2 1; 1/3 1 1; ...], and (1/3)*3! = 2.
		

References

  • P. Curtz, Gazette des Mathematiciens, 1992, 52, p.44.
  • P. Flajolet, X. Gourdon and B. Salvy, Gazette des Mathematiciens, 1993, 55, pp.67-78.

Crossrefs

Programs

  • Maple
    P:= proc(n) option remember; local i, u, x; u:= bernoulli; `if`(n=0, u(0), unapply(expand(u(n) +x *add(u(i) *P(n-i-1)(x), i=0..n-1)), x)) end: a:= n-> (1/Matrix(n, (i, j)-> coeff(P(i-1)(x), x, j-1)))[n, 1] *n!: seq(a(n), n=1..30);  # Alois P. Heinz, Oct 12 2009
  • Mathematica
    p[0, x_] = BernoulliB[0]; p[n_, x_] := p[n, x] = BernoulliB[n] + x*Sum[BernoulliB[i]*p[n-i-1, x], {i, 0, n-1}]; t[m_] := Table[ PadRight[CoefficientList[p[n, x], x], m+1], {n, 0, m}]; mmax = 20; Inverse[t[mmax-1]][[All, 1]]*Range[mmax]!
    (* Jean-François Alcover, Jun 29 2011 *)

Extensions

Edited and more terms from Alois P. Heinz, Oct 12 2009
Showing 1-2 of 2 results.